Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(19): 2929-2939, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37498167

RESUMO

Human disease-associated genetic variations often map to long non-coding RNA (lncRNA) genes; however, elucidation of their functional impact is challenging. We previously identified a new genetic variant rs4454083 (A/G) residing in exon of an uncharacterized lncRNA ARBAG that strongly associates with plasma levels of C-peptide, a hormone that regulates insulin bioavailability. On the opposite strand, rs4454083 also corresponds to an intron of a cerebellum-specific GABA receptor subunit gene GABRA6 that mediates strengthening of inhibitory synapses by insulin. Here, we show that alleles of rs4454083 modulate transcript levels of the antisense gene, ARBAG, which then controls the expression of the sense gene, GABRA6. Predisposing to low C-peptide, GG (a minor allele genotype across ethnicities) stabilizes ARBAG lncRNA causing higher transcript levels in cerebellum. ARBAG lncRNA abundance leads to cleavage of GABRA6 mRNA at the complementary region, resulting in a dysfunctional GABRA6 protein that would not be recruited for synapse strengthening. Together, our findings in human cerebellar cell-line and induced Pluripotent Stem Cells (iPSCs) demonstrate biological role of a novel lncRNA in determining the ratio of mRNA isoforms of a protein-coding gene and the ability of an embedded variant in modulating lncRNA stability leading to inter-individual differences in protein expression.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Peptídeo C/genética , Peptídeo C/metabolismo , Estudo de Associação Genômica Ampla , Cerebelo/metabolismo , RNA Antissenso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
2.
Noncoding RNA ; 9(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36649036

RESUMO

The KALRN gene encodes several multi-domain protein isoforms that localize to neuronal synapses, conferring the ability to grow and retract dendritic spines and shaping axonal outgrowth, dendrite morphology, and dendritic spine re-modeling. The KALRN genomic locus is implicated in several neurodevelopmental and neuropsychiatric diseases, including autism, schizophrenia, bipolar disease, and intellectual disability. We have previously shown that a novel brain-specific long non-coding RNA (lncRNA) arising from the 5' end of the kalrna gene, called durga, regulates neuronal morphology in zebrafish. Here, we characterized mammalian Kalrn loci, annotating and experimentally validating multiple novel non-coding RNAs, including linear and circular variants. Comparing the mouse and human loci, we show that certain non-coding RNAs and Kalrn protein-coding isoforms arising from the locus show similar expression dynamics during development. In humans, mice, and zebrafish, the 5' end of the Kalrn locus gives rise to a chromatin-associated lncRNA that is present in adult ovaries, besides being expressed during brain development and enriched in certain regions of the adult brain. Ectopic expression of this lncRNA led to the downregulation of all the major Kalrn mRNA isoforms. We propose that this lncRNA arising from the 5' end of the Kalrn locus is functionally the mammalian ortholog of zebrafish lncRNA durga.

3.
Elife ; 112022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226913

RESUMO

Escalated and inappropriate levels of aggressive behavior referred to as pathological in psychiatry can lead to violent outcomes with detrimental impact on health and society. Early life stressful experiences might increase the risk of developing pathological aggressive behavior in adulthood, though molecular mechanisms remain elusive. Here, we provide prefrontal cortex and hypothalamus specific transcriptome profiles of peripubertal stress (PPS) exposed Balb/c adult male mice exhibiting escalated aggression and adult female mice resilient to such aberrant behavioral responses. We identify transthyretin (TTR), a well known thyroid hormone transporter, as a key regulator of PPS induced escalated aggressive behavior in males. Brain-region-specific long-term changes in Ttr gene expression and thyroid hormone (TH) availability were evident in PPS induced escalated aggressive male mice, circulating TH being unaltered. Ttr promoter methylation marks were also altered being hypermethylated in hypothalamus and hypomethylated in prefrontal cortex corroborating with its expression pattern. Further, Ttr knockdown in hypothalamus resulted in escalated aggressive behavior in males without PPS and also reduced TH levels and expression of TH-responsive genes (Nrgn, Trh, and Hr). Escalated aggressive behavior along with reduced Ttr gene expression and TH levels in hypothalamus was also evident in next generation F1 male progenies. Our findings reveal that stressful experiences during puberty might trigger lasting escalated aggression by modulating TTR expression in brain. TTR can serve as a potential target in reversal of escalated aggression and related psychopathologies.


Assuntos
Pré-Albumina , Maturidade Sexual , Animais , Camundongos , Masculino , Feminino , Pré-Albumina/genética , Pré-Albumina/metabolismo , Agressão/fisiologia , Córtex Pré-Frontal/metabolismo , Camundongos Endogâmicos BALB C , Hormônios Tireóideos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA