Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828709

RESUMO

The goals of this work are to attempt to decipher if an aniline dication can isomerize to a picoline dication in a given astrochemical environment and if the dissociation of such dications could be a source of kinetically hot fragment ions, some of which could be of significance in the interstellar medium. Toward this purpose, the VUV-induced dication dissociation was investigated experimentally using ion-ion coincidence and computationally by optimizing various pathways. Contrary to previous reports, we show here that the dication of aniline is structurally too weak to retain its ring structure while following the dissociation pathways. A fragile open ring structure could lead to all the experimentally observed pathways of noticeable intensity. The significance of this, especially in terms of molecular dynamics, can be assessed by the fact that all the transformations were facilitated by specific hydrogen migration. A clear selectivity is seen where the dication of aniline was found to prefer a rearrangement of hydrogen within the ring rather than transferring from nitrogen to the ring, which is conventionally expected and has to do with the charge state and charge localization.

2.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37702355

RESUMO

In search of the cause behind the similarities often seen in the fragmentation of PANHs, vacuum ultraviolet (VUV) photodissociation of two pairs of isomers quinoline-isoquinoline and 2-naphthylamine-3-methyl-quinoline are studied using the velocity map imaging technique. The internal energy dependence of all primary fragmentation channels is obtained for all four target molecules. The decay dynamics of the four molecules is studied by comparing their various experimental signatures. The dominant channel for the first pair of isomers is found to be hydrogen cyanide (HCN) neutral loss, while the second pair of isomers lose HCNH neutral as its dominant channel. Despite this difference in their primary decay products and the differences in the structures of the four targets, various similarities in their experimental signatures are found, which could be explained by isomerization mechanisms to common structures. The fundamental role of these isomerization in controlling different dissociative channels is explored via a detailed analysis of the experimental photoelectron-photoion coincidences and the investigation of the theoretical potential energy surface. These results add to the notion of a universal PANH fragmentation mechanism and suggests the seven member isomerization as a key candidate for this universal mechanism. The balance between isomerization, dissociation, and other key mechanistic processes in the reaction pathways, such as hydrogen migrations, is also highlighted for the four molecules.

3.
Phys Rev Lett ; 131(4): 045001, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566861

RESUMO

We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.

4.
Nanoscale ; 15(34): 14025-14031, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37559557

RESUMO

Helium nanodroplets are ideal model systems to unravel the complex interaction of condensed matter with ionizing radiation. Here we study the effect of purely elastic electron scattering on angular and energy distributions of photoelectrons emitted from He nanodroplets of variable size (10-109 atoms per droplets). For large droplets, photoelectrons develop a pronounced anisotropy along the incident light beam due to a shadowing effect within the droplets. In contrast, the detected photoelectron spectra are only weakly perturbed. This opens up possibilities for photoelectron spectroscopy of dopants embedded in droplets provided they are smaller than the penetration depth of the light and the trapping range of emitted electrons in liquid helium.

5.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37347125

RESUMO

Polycyclic aromatic hydrocarbons have widely been conjectured to be ubiquitous in space, as supported by the recent discovery of two isomers of cyanonaphthalene, indene, and 2-cyanoindene in the Taurus molecular cloud-1 using radioastronomy. Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated using synchrotron radiation over the hν = 9.0-19.5 eV range, revealing that prompt autoionization from the plasmon resonance dominates the photophysics for hν = 11.5-16.0 eV. Minimal photo-induced dissociation, whether originating from an excited state impulsive bond rupture or through internal conversion followed by a statistical bond cleavage process, occurs over the microsecond timescale (as limited by the experimental setup). The direct photoionization cross section and photoelectron angular distributions are simulated using an ezDyson model combining Dyson orbitals with Coulomb wave photoejection. When considering these data in conjunction with recent radiative cooling measurements on 1-CNN+, which showed that cations formed with up to 5 eV of internal energy efficiently stabilize through recurrent fluorescence, we conclude that the organic backbone of 1-CNN is resilient to photodestruction by VUV and soft XUV radiation. These dynamics may prove to be a common feature for the survival of small polycyclic aromatic hydrocarbons in space, provided that the cations have a suitable electronic structure to support recurrent fluorescence.


Assuntos
Temperatura Baixa , Hidrocarbonetos Policíclicos Aromáticos , Fluorescência , Isomerismo , Transição de Fase
6.
Phys Rev Lett ; 128(3): 033001, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119904

RESUMO

We investigate glycine microsolvation with water molecules, mimicking astrophysical conditions, in our laboratory by embedding these clusters in helium nanodroplets at 0.37 K. We recorded mass selective infrared spectra in the frequency range 1500-1800 cm^{-1} where two bands centered at 1630 and 1724 cm^{-1} were observed. By comparison with the extensive accompanying calculations, the band at 1630 cm^{-1} was assigned to the COO^{-} asymmetric stretching mode of the zwitter ion and the band at 1724 cm^{-1} was assigned to redshifted C=O stretch within neutral clusters. We show that zwitter ion formation of amino acids readily occurs with only few water molecules available even under extreme conditions.

7.
Angew Chem Int Ed Engl ; 59(28): 11399-11407, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307809

RESUMO

Intermolecular interactions in bulk water are dominated by pairwise and non-pairwise cooperative interactions. While accurate descriptions of the pairwise interactions are available and can be tested by precise low-frequency spectra of the water dimer up to 550 cm-1 , the same does not hold for the three-body interactions. Here, we report the first comprehensive spectrum of the water trimer in the frequency region from 70 to 620 cm-1 using helium-nanodroplet isolation and free-electron lasers. By comparison to accompanying high-level quantum calculations, the experimentally observed intermolecular bands can be assigned. The transition frequencies of the degenerate translation, the degenerate in-plane and the non-degenerate out-of-plane libration, as well as additional bands of the out-of-plane librational mode are reported for the first time. These provide a benchmark for state-of-the-art water potentials and dipole-moment surfaces, especially with respect to three-body interactions.

8.
Angew Chem Int Ed Engl ; 58(37): 13119-13126, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31350942

RESUMO

Using the helium nanodroplet isolation setup at the ultrabright free-electron laser source FELIX in Nijmegen (BoHeNDI@FELIX), the intermolecular modes of water dimer in the frequency region from 70 to 550 cm-1 were recorded. Observed bands were assigned to donor torsion, acceptor wag, acceptor twist, intermolecular stretch, donor torsion overtone, and in-plane and out-of-plane librational modes. This experimental data set provides a sensitive test for state-of-the-art water potentials and dipole moment surfaces. Theoretical calculations of the IR spectrum are presented using high-level quantum and approximate quasiclassical molecular dynamics approaches. These calculations use the full-dimensional ab initio WHHB potential and dipole moment surfaces. Based on the experimental data, a considerable increase of the acceptor switch and a bifurcation tunneling splitting in the librational mode is deduced, which is a consequence of the effective decrease in the tunneling barrier.

9.
Sci Adv ; 5(6): eaav8179, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187059

RESUMO

Chemical reactions at ultralow temperatures are of fundamental importance to primordial molecular evolution as it occurs on icy mantles of dust nanoparticles or on ultracold water clusters in dense interstellar clouds. As we show, studying reactions in a stepwise manner in ultracold helium nanodroplets by mass-selective infrared (IR) spectroscopy provides an avenue to mimic these "stardust conditions" in the laboratory. In our joint experimental/theoretical study, in which we successively add H2O molecules to HCl, we disclose a unique IR fingerprint at 1337 cm-1 that heralds hydronium (H3O+) formation and, thus, acid dissociation generating solvated protons. In stark contrast, no reaction is observed when reversing the sequence by allowing HCl to interact with preformed small embryonic ice-like clusters. Our ab initio simulations demonstrate that not only reaction stoichiometry but also the reaction sequence needs to be explicitly considered to rationalize ultracold chemistry.

10.
Phys Chem Chem Phys ; 21(37): 20582-20587, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31147653

RESUMO

We report high-resolution infrared spectroscopic studies on complexes of propargyl alcohol with water (D2O) molecules, formed in superfluid helium droplets. The spectra were recorded in the frequency ranges of 2605-2700 cm-1 and 2730-2820 cm-1, covering the symmetric and antisymmetric stretching vibrations of the bound D2O. Mass-selective infrared spectroscopic measurements, a variation of the band intensities with dopant partial pressures (pickup curves) and ab initio calculations, performed at the MP2/6-311++G(d,p) level of theory, reveal the formation of two local minimum structures for the 1 : 1 PAD2O cluster. These structures are bound via O-HO (with water as the H-bond donor) and -C[triple bond, length as m-dash]C-HO (with propargyl alcohol as the H-bond donor) interactions and are less stable by 4.9 kJ mol-1 and 12.7 kJ mol-1, respectively, as compared to the global minimum structure for the complex.

11.
J Chem Phys ; 146(11): 114306, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28330353

RESUMO

The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

12.
J Phys Chem Lett ; 8(4): 794-800, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28145117

RESUMO

Careful protein structure analysis unravels many unknown and unappreciated noncovalent interactions that control protein structure; one such unrecognized interaction in protein is selenium centered hydrogen bonds (SeCHBs). We report, for the first time, SeCHBs involving the amide proton and selenium of selenomethionine (Mse), i.e., amide-N-H···Se H-bonds discerned in proteins. Using mass selective and conformer specific high resolution vibrational spectroscopy, gold standard quantum chemical calculations at CCSD(T), and in-depth protein structure analysis, we establish that amide-N-H···Se and amide-N-H···Te H-bonds are as strong as conventional amide-NH···O and amide-NH···O═C H-bonds despite smaller electronegativity of selenium and tellurium than oxygen. It is in fact, electronegativity, atomic charge, and polarizability of the H-bond acceptor atoms are at play in deciding the strength of H-bonds. The amide-N-H···Se and amide-N-H···Te H-bonds presented here are not only new additions to the ever expanding world of noncovalent interactions, but also are of central importance to design new force-fields for better biomolecular structure simulations.


Assuntos
Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Selênio/química , Selenometionina/química , Amidas/química , Cristalografia por Raios X , Hidrogênio/química , Nitrogênio/química , Oxigênio/química , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...