Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Immunol ; 14: 1306501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259437

RESUMO

Several filoviruses, including Marburg virus (MARV), cause severe disease in humans and nonhuman primates (NHPs). However, the Egyptian rousette bat (ERB, Rousettus aegyptiacus), the only known MARV reservoir, shows no overt illness upon natural or experimental infection, which, like other bat hosts of zoonoses, is due to well-adapted, likely species-specific immune features. Despite advances in understanding reservoir immune responses to filoviruses, ERB peripheral blood responses to MARV and how they compare to those of diseased filovirus-infected spillover hosts remain ill-defined. We thus conducted a longitudinal analysis of ERB blood gene responses during acute MARV infection. These data were then contrasted with a compilation of published primate blood response studies to elucidate gene correlates of filovirus protection versus disease. Our work expands on previous findings in MARV-infected ERBs by supporting both host resistance and disease tolerance mechanisms, offers insight into the peripheral immunocellular repertoire during infection, and provides the most direct known cross-examination between reservoir and spillover hosts of the most prevalently-regulated response genes, pathways and activities associated with differences in filovirus pathogenesis and pathogenicity.


Assuntos
Quirópteros , Filoviridae , Marburgvirus , Humanos , Animais , Filoviridae/genética , Tolerância Imunológica , Imunidade
2.
Front Microbiol ; 12: 667356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880834

RESUMO

The Pasteurellaceae family has been associated with fatal diseases in numerous avian species. Several new taxa within this family, including Bisgaard taxon 40, have been recently described in wild birds, but their genomic characteristics and pathogenicity are not well understood. We isolated Bisgaard taxon 40 from four species of seabirds, including one sampled during a mass, multi-species mortality event in Florida, United States. Here, we present a comprehensive phenotypic and genetic characterization of Bisgaard taxon 40 and comparative genomic analysis with reference strains from the Pasteurellaceae family, aiming at determining its phylogenetic position, antimicrobial susceptibility profile, and identifying putative virulence factors. In silico multilocus sequence-based and whole-genome-based phylogenetic analysis clustered all Bisgaard taxon 40 strains together on a distinct branch separated from the other members of the Pasteurellaceae family, indicating that Bisgaard taxon 40 could represent a new genus. These findings were further supported by protein similarity analyses using the concatenation of 31 conserved proteins and other taxonomic approaches such as the percentage of conserved protein test. Additionally, several putative virulence factors were identified, including those associated with adhesion (capsule, ompA, ompH) and colonization (exbD, fur, galU, galE, lpxA, lpxC, and kdsA) of the host and a cytolethal distending toxin (cdt), which may have played a role in disease development leading to the mortality event. Considerably low minimum inhibitory concentrations (MICs) were found for all the drugs tested, in concordance with the absence of antimicrobial resistance genes in these genomes. The novel findings of this study highlight genomic and phenotypic characteristics of this bacterium, providing insights into genome evolution and pathogenicity. We propose a reclassification of these organisms within the Pasteurellaceae family, designated as Mergibacter gen. nov., with Mergibacter septicus sp. nov. as the type species. The type strain is Mergibacter septicus A25201T (=DSM 112696).

3.
Ticks Tick Borne Dis ; 12(6): 101820, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555711

RESUMO

Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.


Assuntos
Ixodidae/virologia , Vírus/isolamento & purificação , Animais , Ixodidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/virologia , Ninfa/crescimento & desenvolvimento , Ninfa/virologia , República da Coreia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/transmissão , Doenças Transmitidas por Carrapatos/virologia
4.
Cell Rep Med ; 2(8): 100351, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467242

RESUMO

Bundibugyo virus (BDBV) is one of four ebolaviruses known to cause disease in humans. Bundibugyo virus disease (BVD) outbreaks occurred in 2007-2008 in Bundibugyo District, Uganda, and in 2012 in Isiro, Province Orientale, Democratic Republic of the Congo. The 2012 BVD outbreak resulted in 38 laboratory-confirmed cases of human infection, 13 of whom died. However, only 4 BDBV specimens from the 2012 outbreak have been sequenced. Here, we provide BDBV sequences from seven additional patients. Analysis of the molecular epidemiology and evolutionary dynamics of the 2012 outbreak with these additional isolates challenges the current hypothesis that the outbreak was the result of a single spillover event. In addition, one patient record indicates that BDBV's initial emergence in Isiro occurred 50 days earlier than previously accepted. Collectively, this work demonstrates how retrospective sequencing can be used to elucidate outbreak origins and provide epidemiological contexts to a medically relevant pathogen.


Assuntos
Surtos de Doenças , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/genética , Adolescente , Adulto , Idoso , Animais , Teorema de Bayes , Pré-Escolar , Chlorocebus aethiops , Ebolavirus/genética , Feminino , Genoma Viral , Haplótipos/genética , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Células Vero
5.
Curr Biol ; 31(2): 257-270.e5, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157026

RESUMO

Marburg virus (MARV) is among the most virulent pathogens of primates, including humans. Contributors to severe MARV disease include immune response suppression and inflammatory gene dysregulation ("cytokine storm"), leading to systemic damage and often death. Conversely, MARV causes little to no clinical disease in its reservoir host, the Egyptian rousette bat (ERB). Previous genomic and in vitro data suggest that a tolerant ERB immune response may underlie MARV avirulence, but no significant examination of this response in vivo yet exists. Here, using colony-bred ERBs inoculated with a bat isolate of MARV, we use species-specific antibodies and an immune gene probe array (NanoString) to temporally characterize the transcriptional host response at sites of MARV replication relevant to primate pathogenesis and immunity, including CD14+ monocytes/macrophages, critical immune response mediators, primary MARV targets, and skin at the inoculation site, where highest viral loads and initial engagement of antiviral defenses are expected. Our analysis shows that ERBs upregulate canonical antiviral genes typical of mammalian systems, such as ISG15, IFIT1, and OAS3, yet demonstrate a remarkable lack of significant induction of proinflammatory genes classically implicated in primate filoviral pathogenesis, including CCL8, FAS, and IL6. Together, these findings offer the first in vivo functional evidence for disease tolerance as an immunological mechanism by which the bat reservoir asymptomatically hosts MARV. More broadly, these data highlight factors determining disparate outcomes between reservoir and spillover hosts and defensive strategies likely utilized by bat hosts of other emerging pathogens, knowledge that may guide development of effective antiviral therapies.


Assuntos
Quirópteros/imunologia , Reservatórios de Doenças/virologia , Tolerância Imunológica/imunologia , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Animais , Infecções Assintomáticas , Quirópteros/sangue , Quirópteros/genética , Quirópteros/virologia , Feminino , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Tolerância Imunológica/genética , Masculino , Doença do Vírus de Marburg/virologia , Monócitos/imunologia
6.
Front Microbiol ; 11: 593542, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193267

RESUMO

Francisella tularensis, the causative agent of tularemia, is capable of causing disease in a multitude of mammals and remains a formidable human pathogen due to a high morbidity, low infectious dose, lack of a FDA approved vaccine, and ease of aerosolization. For these reasons, there is concern over the use of F. tularensis as a biological weapon, and, therefore, it has been classified as a Tier 1 select agent. Fluoroquinolones and aminoglycosides often serve as the first line of defense for treatment of tularemia. However, high levels of resistance to these antibiotics has been observed in gram-negative bacteria in recent years, and naturally derived resistant Francisella strains have been described in the literature. The acquisition of antibiotic resistance, either natural or engineered, presents a challenge for the development of medical countermeasures. In this study, we generated a surrogate panel of antibiotic resistant F. novicida and Live Vaccine Strain (LVS) by selection in the presence of antibiotics and characterized their growth, biofilm capacity, and fitness. These experiments were carried out in an effort to (1) assess the fitness of resistant strains; and (2) identify new targets to investigate for the development of vaccines or therapeutics. All strains exhibited a high level of resistance to either ciprofloxacin or streptomycin, a fluoroquinolone and aminoglycoside, respectively. Whole genome sequencing of this panel revealed both on-pathway and off-pathway mutations, with more mutations arising in LVS. For F. novicida, we observed decreased biofilm formation for all ciprofloxacin resistant strains compared to wild-type, while streptomycin resistant isolates were unaffected in biofilm capacity. The fitness of representative antibiotic resistant strains was assessed in vitro in murine macrophage-like cell lines, and also in vivo in a murine model of pneumonic infection. These experiments revealed that mutations obtained by these methods led to nearly all ciprofloxacin resistant Francisella strains tested being completely attenuated while mild attenuation was observed in streptomycin resistant strains. This study is one of the few to examine the link between acquired antibiotic resistance and fitness in Francisella spp., as well as enable the discovery of new targets for medical countermeasure development.

7.
Lancet Infect Dis ; 20(9): e231-e237, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32563280

RESUMO

The PALM trial in the Democratic Republic of the Congo identified a statistically significant survival benefit for two monoclonal antibody-based therapeutics in the treatment of acute Ebola virus disease; however, substantial gaps remain in improving the outcomes of acute Ebola virus disease and for the survivors. Ongoing efforts are needed to develop more effective strategies, particularly for individuals with severe disease, for prevention and treatment of viral persistence in immune-privileged sites, for optimisation of post-exposure prophylaxis, and to increase therapeutic breadth. As antibody-based approaches are identified and advanced, promising small-molecule antivirals currently in clinical stage development should continue to be evaluated for filovirus diseases, with consideration of their added value in combination approaches with bundled supportive care, their penetration in tissues of interest, the absence of interaction with glycoprotein-based vaccines, and filoviral breadth.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/terapia , Humanos , Profilaxia Pós-Exposição
8.
PLoS Negl Trop Dis ; 14(6): e0008107, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569276

RESUMO

Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.


Assuntos
Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Doenças Virais Sexualmente Transmissíveis/transmissão , Doenças Transmitidas por Vetores/transmissão , Infecção por Zika virus/transmissão , Animais , Chlorocebus aethiops , Culicidae , Feminino , Masculino
9.
Arch Virol ; 165(7): 1715-1717, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417973

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an important pathogen of medical and veterinary importance in the Americas. In this report, we present the complete genome sequences of five VEEV isolates obtained from pools of Culex (Melanoconion) gnomatos (4) or Culex (Melanoconion) pedroi (1) from Iquitos, Peru. Genetic and phylogenetic analyses showed that all five isolates grouped within the VEEV complex sister to VEEV IIIC and are members of subtype IIID. This is the first report of full-length genomic sequences of VEEV IIID.


Assuntos
Culex/virologia , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Encefalomielite Equina Venezuelana/virologia , Genoma Viral , Mosquitos Vetores/virologia , Animais , Sequência de Bases , Vírus da Encefalite Equina Venezuelana/classificação , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/transmissão , Genômica , Cavalos , Peru , Filogenia
10.
mSphere ; 4(6)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801842

RESUMO

Dysregulated and maladaptive immune responses are at the forefront of human diseases caused by infection with zoonotic viral hemorrhagic fever viruses. Elucidating mechanisms of how the natural animal reservoirs of these viruses coexist with these agents without overt disease, while permitting sufficient replication to allow for transmission and maintenance in a population, is important for understanding the viral ecology and spillover to humans. The Egyptian rousette bat (ERB) has been identified as a reservoir for Marburg virus (MARV), a filovirus and the etiological agent of the highly lethal Marburg virus disease. Little is known regarding how these bats immunologically respond to MARV infection. In humans, macrophages and dendritic cells (DCs) are primary targets of infection, and their dysregulation is thought to play a central role in filovirus diseases, by disturbing their normal functions as innate sensors and adaptive immune response facilitators while serving as amplification and dissemination agents for the virus. The infection status and responses to MARV in bat myeloid-lineage cells are uncharacterized and likely represent an important modulator of the bat's immune response to MARV infection. Here, we generate DCs from the bone marrow of rousette bats. Infection with a bat isolate of MARV resulted in a low level of transcription in these cells and significantly downregulated DC maturation and adaptive immune-stimulatory pathways while simultaneously upregulating interferon-related pathogen-sensing pathways. This study provides a first insight into how the bat immune response is directed toward preventing aberrant inflammatory responses while mounting an antiviral response to defend against MARV infection.IMPORTANCE Marburg viruses (MARVs) cause severe human disease resulting from aberrant immune responses. Dendritic cells (DCs) are primary targets of infection and are dysregulated by MARV. Dysregulation of DCs facilitates MARV replication and virus dissemination and influences downstream immune responses that result in immunopathology. Egyptian rousette bats (ERBs) are natural reservoirs of MARV, and infection results in virus replication and shedding, with asymptomatic control of the virus within weeks. The mechanisms that bats employ to appropriately respond to infection while avoiding disease are unknown. Because DC infection and modulation are important early events in human disease, we measured the transcriptional responses of ERB DCs to MARV. The significance of this work is in identifying cell type-specific coevolved responses between ERBs and MARV, which gives insight into how bat reservoirs are able to harbor MARV and permit viral replication, allowing transmission and maintenance in the population while simultaneously preventing immunopathogenesis.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Marburgvirus/imunologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Imunidade Inata , Fatores Imunológicos/metabolismo , Marburgvirus/crescimento & desenvolvimento
11.
Viruses ; 10(11)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405055

RESUMO

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus.


Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno , Infecção por Zika virus/virologia , Zika virus/fisiologia , Brasil/epidemiologia , Citocinas/metabolismo , Feminino , Genitália Masculina/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Sêmen/metabolismo , Sêmen/virologia , Zika virus/classificação , Zika virus/ultraestrutura , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão
12.
Viruses ; 10(11)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400182

RESUMO

The Egyptian rousette bat (ERB) is the only known Marburg virus (MARV) reservoir host. ERBs develop a productive MARV infection with low viremia and shedding but no overt disease, suggesting this virus is efficiently controlled by ERB antiviral responses. This dynamic would contrast with humans, where MARV-mediated interferon (IFN) antagonism early in infection is thought to contribute to the severe, often fatal disease. The newly-annotated ERB genome and transcriptome have now enabled us to use a custom-designed NanoString nCounter ERB CodeSet in conjunction with RNA-seq to investigate responses in a MARV-infected ERB cell line. Both transcriptomic platforms correlated well and showed that MARV inhibited the antiviral program in ERB cells, while an IFN antagonism-impaired MARV was less efficient at suppressing the response gene induction, phenotypes previously reported for primate cells. Interestingly, and despite the expansion of IFN loci in the ERB genome, neither MARV showed specific induction of almost any IFN gene. However, we detected an upregulation of putative, unannotated ERB antiviral paralogs, as well as an elevated basal expression in uninfected ERB cells of key antiviral genes.


Assuntos
Quirópteros/genética , Quirópteros/virologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Transcriptoma , Animais , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Imunidade Inata/genética , Interferons/farmacologia
13.
Viruses ; 10(11)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463334

RESUMO

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000⁻300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Vírus Lassa/crescimento & desenvolvimento , Substâncias Luminescentes/análise , Testes de Neutralização/métodos , Coloração e Rotulagem/métodos , Animais , Anticorpos Neutralizantes/imunologia , Antivirais/farmacologia , Chlorocebus aethiops , Fluorometria/métodos , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Vírus Lassa/efeitos dos fármacos , Vírus Lassa/genética , Vírus Lassa/imunologia , Genética Reversa , Ribavirina/farmacologia , Células Vero
14.
Viruses ; 10(11): [E615], Nov. 2018. ilus
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IIERPROD, Sec. Est. Saúde SP | ID: biblio-1021597

RESUMO

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Interações Hospedeiro-Patógeno , Zika virus
15.
Cell Rep ; 24(4): 1050-1059.e5, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044972

RESUMO

Development of an effective vaccine became a worldwide priority after the devastating 2013-2016 Ebola disease outbreak. To qualitatively profile the humoral response against advanced filovirus vaccine candidates, we developed Domain Programmable Arrays (DPA), a systems serology platform to identify epitopes targeted after vaccination or filovirus infection. We optimized the assay using a panel of well-characterized monoclonal antibodies. After optimization, we utilized the system to longitudinally characterize the immunoglobulin (Ig) isotype-specific responses in non-human primates vaccinated with rVSV-ΔG-EBOV-glycoprotein (GP). Strikingly, we observed that, although the IgM response was directed against epitopes over the whole GP, the IgG and IgA responses were almost exclusively directed against the mucin-like domain (MLD) of the glycan cap. Further research will be needed to characterize this possible biased IgG and IgA response toward the MLD, but the results corroborate that DPA is a valuable tool to qualitatively measure the humoral response after vaccination.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Imunidade Humoral/genética , Animais , Vacinas contra Ebola/sangue , Humanos , Macaca fascicularis , Camundongos
17.
Genome Announc ; 5(40)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983005

RESUMO

The bunyaviral monogeneric family Nairoviridae currently includes 12 species for 35 distinct viruses. Here, we present the complete genome coding sequences of an additional seven nairoviruses. Five of them can be assigned to established species, whereas two of them (Artashat and Chim viruses) ought to be assigned to two novel species.

18.
Emerg Infect Dis ; 23(8): 1274-1281, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28548637

RESUMO

Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.


Assuntos
Macaca fascicularis , Macaca mulatta , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Feminino , Masculino , Vagina , Replicação Viral , Eliminação de Partículas Virais , Infecção por Zika virus/transmissão
19.
PLoS One ; 12(2): e0171333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182717

RESUMO

Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA) as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5) of all compared methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Vírus de RNA/genética , RNA Viral/análise , Análise de Sequência de RNA , Manejo de Espécimes/métodos , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Erros de Diagnóstico , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , Projetos de Pesquisa , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Manejo de Espécimes/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...