Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
2.
J Environ Manage ; 306: 114301, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032938

RESUMO

The restoration of blue carbon ecosystems, such as mangrove forests, is increasingly used as a management tool to mitigate climate change by removing and sequestering atmospheric carbon in the ground. However, estimates of carbon-offset potential are currently based on data from natural mangrove forests, potentially leading to overestimating the carbon-offset potential from restored mangroves. Here, in the first study of its kind, we utilise 210Pb sediment age-dating techniques and greenhouse gas flux measures to estimate blue carbon additionality in restored mangrove forests, ranging from 13 to 35 years old. As expected, mangrove age had a significant effect on carbon additionality and carbon accretion rate, with the older mangrove stands (17 and 35 years old) holding double the total carbon stocks (aboveground + soil stocks; ∼115 tonnes C ha-1) and double the soil sequestration rates (∼3 tonnes C ha-1 yr-1) than the youngest mangrove stand (13 years old). Although soil carbon stocks increased with mangrove age, the aboveground plant stocks were highest in the 17-year-old stand. Mangrove age also had a significant effect on soil carbon fluxes, with the older mangroves (≥17 years) releasing one-fourth of the CH4 emissions, but double the CO2 flux compared to young stands. Our study suggests that the carbon sink capacity of restored mangrove forests increases with age, but stabilises once they mature (e.g., >17 years). This means that by using carbon sequestration and emissions from natural forests, mangrove restoration projects may be overestimating their carbon sequestration potential.


Assuntos
Carbono , Áreas Alagadas , Sequestro de Carbono , Ecossistema , Florestas , Solo
3.
Mar Pollut Bull ; 171: 112746, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332353

RESUMO

Mangroves are known to provide many ecosystem services, however there is little information on their potential role to cap and immobilise toxic levels of total petroleum hydrocarbons (TPH). Using an Australian case study, we investigated the capacity of planted mangroves (Avicennia marina) to immobilise TPH within a small embayment (Stony Creek, Victoria, Australia) subjected to minor oil spills throughout the 1980s. Mangroves were planted on the oil rich strata in 1984 to rehabilitate the site. Currently the area is covered with a dense mangrove forest. One-meter-long sediment cores revealed that mangroves have formed a thick (up to 30 cm) organic layer above the TPH-contaminated sediments, accumulating on average 6.6 mm of sediment per year. Mean TPH levels below this organic layer (30-50 cm) are extremely toxic (30,441.6 mg kg-1), exceeding safety thresholds up to 220-fold which is eight times higher when compared to top layer (0-10 cm).


Assuntos
Petróleo , Ecossistema , Sedimentos Geológicos , Vitória , Áreas Alagadas
4.
Mar Pollut Bull ; 165: 112024, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33549995

RESUMO

Coastal ecosystems are under increasing pressure from land-derived eutrophication in most developed coastlines worldwide. Here, we tested for 277 days the effects of a nutrient pulse on blue carbon retention and cycling within an Australian temperate coastal system. After 56 days of exposure, saltmarsh and mangrove plots subject to a high-nutrient treatment (~20 g N m-2 yr-1 and ~2 g P m-2 yr-1) had ~23% lower superficial soil carbon stocks. Mangrove plots also experienced a ~33% reduction in the microbe Amplicon Sequence Variant richness and a shift in community structure linked to elevated ammonium concentrations. Live plant cover, tea litter decomposition, and soil carbon fluxes (CO2 and CH4) were not significantly affected by the pulse. Before the end of the experiment, soil carbon- and nitrogen-cycling had returned to control levels, highlighting the significant but short-lived impact that a nutrient pulse can have on the carbon sink capacity of coastal wetlands.


Assuntos
Carbono , Ecossistema , Austrália , Carbono/análise , Nutrientes , Solo , Áreas Alagadas
5.
New Phytol ; 229(5): 2647-2659, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33156533

RESUMO

Cell size influences the rate at which phytoplankton assimilate dissolved inorganic carbon (DIC), but it is unclear whether volume-specific carbon uptake should be greater in smaller or larger cells. On the one hand, Fick's Law predicts smaller cells to have a superior diffusive CO2 supply. On the other, larger cells may have greater scope to invest metabolic energy to upregulate active transport per unit area through CO2 -concentrating mechanisms (CCMs). Previous studies have focused on among-species comparisons, which complicates disentangling the role of cell size from other covarying traits. In this study, we investigated the DIC assimilation of the green alga Dunaliella tertiolecta after using artificial selection to evolve a 9.3-fold difference in cell volume. We compared CO2 affinity, external carbonic anhydrase (CAext ), isotopic signatures (δ13 C) and growth among size-selected lineages. Evolving cells to larger sizes led to an upregulation of CCMs that improved the DIC uptake of this species, with higher CO2 affinity, higher CAext and higher δ13 C. Larger cells also achieved faster growth and higher maximum biovolume densities. We showed that evolutionary shifts in cell size can alter the efficiency of DIC uptake systems to influence the fitness of a phytoplankton species.


Assuntos
Anidrases Carbônicas , Fitoplâncton , Carbono , Dióxido de Carbono , Anidrases Carbônicas/metabolismo , Tamanho Celular , Fotossíntese , Fitoplâncton/metabolismo
6.
Environ Pollut ; 263(Pt A): 114450, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283454

RESUMO

Pharmaceutical pollution is now recognised as a major emerging agent of global change. Increasingly, pharmaceutical pollutants are documented to disrupt ecologically important physiological and behavioural traits in exposed wildlife. However, little is known about potential impacts of pharmaceutical exposure on among-individual variation in these traits, despite phenotypic diversity being critical for population resilience to environmental change. Furthermore, although wildlife commonly experience multiple stressors contemporaneously, potential interactive effects between pharmaceuticals and biological stressors-such as predation threat-remain poorly understood. To redress this, we investigated the impacts of long-term exposure to the pervasive pharmaceutical pollutant fluoxetine (Prozac®) on among-individual variation in metabolic and behavioural traits, and the combined impacts of fluoxetine exposure and predation threat on mean metabolic and behavioural traits in a freshwater fish, the guppy (Poecilia reticulata). Using a mesocosm system, guppy populations were exposed for 15 months to one of two field-realistic levels of fluoxetine (nominal concentrations: 30 and 300 ng/L) or a solvent control. Fish from these populations were then tested for metabolic rate (oxygen uptake) and behaviour (activity), both before and after experiencing one of three levels of a predation treatment: an empty tank, a non-predatory fish (Melanotaenia splendida) or a predatory fish (Leiopotherapon unicolor). Guppies from both fluoxetine treatments had ∼70% lower among-individual variation in their activity levels, compared to unexposed fish. Similarly, fluoxetine exposure at the higher dosage was associated with a significant (26%) reduction in individual-level variation in oxygen uptake relative to unexposed fish. In addition, mean baseline metabolic rate was disrupted in low-fluoxetine exposed fish, although mean metabolic and behavioural responses to predation threat were not affected. Overall, our study demonstrates that long-term exposure to a pervasive pharmaceutical pollutant alters ecologically relevant traits in fish and erodes among-individual variability, which may be detrimental to the stability of contaminated populations globally.


Assuntos
Poluentes Ambientais , Poecilia , Poluentes Químicos da Água , Animais , Variação Biológica da População , Fluoxetina
7.
Sci Rep ; 9(1): 15705, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673067

RESUMO

Coral reefs are degrading globally leading to a catastrophic loss of biodiversity. While shifts in the species composition of communities have been well documented associated with habitat change, the mechanisms that underlie change are often poorly understood. Our study experimentally examines the effects of coral degradation on the trait-mediated effects of predators on the morphology, behaviour and performance of a juvenile coral reef fish. Juvenile damselfish were exposed to predators or controls (omnivore or nothing) in seawater that had flowed over either live or dead-degraded coral over a 45d period. No interaction between water source and predator exposure was found. However, fish exposed to degraded water had larger false eyespots relative to the size of their true eyes, and were more active, both of which may lead to a survival advantage. Non-consumptive effects of predators on prey occurred regardless of water source and included longer and deeper bodies, large false eyespots that may distract predator strikes away from the vulnerable head region, and shorter latencies in their response to a simulated predator strike. Research underscores that phenotypic plasticity may assist fishes in coping with habitat degradation and promote greater resilience to habitat change than may otherwise be predicted.


Assuntos
Recifes de Corais , Ecossistema , Comportamento Predatório , Animais , Peixes/fisiologia
8.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068687

RESUMO

Size determines the rate at which organisms acquire and use resources but it is unclear what size should be favoured under unpredictable resource regimes. Some theories claim smaller organisms can grow faster following a resource pulse, whereas others argue larger species can accumulate more resources and maintain growth for longer periods between resource pulses. Testing these theories has relied on interspecific comparisons, which tend to confound body size with other life-history traits. As a more direct approach, we used 280 generations of artificial selection to evolve a 10-fold difference in mean body size between small- and large-selected phytoplankton lineages of Dunaliella tertiolecta, while controlling for biotic and abiotic variables. We then quantified how body size affected the ability of this species to grow at nutrient-replete conditions and following periods of nitrogen or phosphorous deprivation. Overall, smaller cells showed slower growth, lower storage capacity and poorer recovery from phosphorous depletion, as predicted by the 'fasting endurance hypothesis'. However, recovery from nitrogen limitation was independent of size-a finding unanticipated by current theories. Phytoplankton species are responsible for much of the global carbon fixation and projected trends of cell size decline could reduce primary productivity by lowering the ability of a cell to store resources.


Assuntos
Tamanho Celular , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/fisiologia , Clorofíceas/citologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Seleção Genética
9.
New Phytol ; 219(1): 449-461, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29658153

RESUMO

Cell size correlates with most traits among phytoplankton species. Theory predicts that larger cells should show poorer photosynthetic performance, perhaps due to reduced intracellular self-shading (i.e. package effect). Yet current theory relies heavily on interspecific correlational approaches and causal relationships between size and photosynthetic machinery have remained untested. As a more direct test, we applied 250 generations of artificial selection (c. 20 months) to evolve the green microalga Dunaliella teriolecta (Chlorophyta) toward different mean cell sizes, while monitoring all major photosynthetic parameters. Evolving larger sizes (> 1500% difference in volume) resulted in reduced oxygen production per chlorophyll molecule - as predicted by the package effect. However, large-evolved cells showed substantially higher rates of oxygen production - a finding unanticipated by current theory. In addition, volume-specific photosynthetic pigments increased with size (Chla+b), while photo-protectant pigments decreased (ß-carotene). Finally, larger cells displayed higher growth performances and Fv /Fm , steeper slopes of rapid light curves (α) and smaller light-harvesting antennae (σPSII ) with higher connectivity (ρ). Overall, evolving a common ancestor into different sizes showed that the photosynthetic characteristics of a species coevolves with cell volume. Moreover, our experiment revealed a trade-off between chlorophyll-specific (decreasing with size) and volume-specific (increasing with size) oxygen production in a cell.


Assuntos
Clorofíceas/citologia , Clorofíceas/fisiologia , Fotossíntese , Melhoramento Vegetal/métodos , Carbono/metabolismo , Tamanho Celular , Clorofila/metabolismo , Luz , Microalgas/citologia , Microalgas/fisiologia , Pigmentos Biológicos/metabolismo , Células Vegetais
10.
J Anim Ecol ; 85(4): 1078-86, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27113316

RESUMO

Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three-tier reef fish food web and intermittent-flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non-predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic-level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non-consumptive effects of top predators in marine food webs.


Assuntos
Metabolismo Basal , Cadeia Alimentar , Perciformes/fisiologia , Comportamento Predatório , Animais , Recifes de Corais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...