Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 37(12): 1772-1782, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607708

RESUMO

OBJECTIVES: To resolve the feasibility of the pulse-delay photocuring technique as a clinical strategy for reducing the detrimental polymerization stress induced in dental composites during the photocuring process. METHODS: Model dental composites with high and low-filler contents were cured with the pulse-delay photocuring technique using different combinations of photocuring variables (irradiance, exposure time, and delay time). Irradiance used ranged from 0.1W/cm2 to 4W/cm2. The exposure time of the first pulse varied from 0.2s to 27.2s and the delay times ranged from 10s to 120s. The radiant exposure was varied from 4J/cm2 to 20J/cm2. A cantilever-beam based instrument (NIST Standards Reference Instrument 6005) was used to implement the photocuring technique for the measurement of the polymerization properties (the degree of monomer conversion, polymerization stress induced due to shrinkage, and temperature change due to the reaction exotherm and curing light absorbance) simultaneously in real-time. These properties were compared with those obtained using the conventional photocuring technique (i.e., using a constant irradiance for a fixed exposure time, a uniform exposure). RESULTS: There exists a minimum radiant exposure, such that a reduction in the polymerization stress can be achieved without sacrificing the degree of monomer conversion by using the pulse-delay over the conventional photocuring technique. More specifically, stress reductions of up to 19% and 32% was observed with the pulse-delay when compared with the conventional photocuring technique at an irradiance of 0.5W/cm2 and 4W/cm2, respectively. The reduction occurred when the exposure time of the first pulse was greater than, but closer to, the gelation time (i.e., lower than the vitrification time) of the composite, regardless of the delay time used. Lower thermal shrinkage (contraction) during the post-curing time, rather than the stress relaxation during the delay time or lower degree of monomer conversion as claimed in the literature, is the cause of the reduction in the polymerization stress. SIGNIFICANCE: The study clarifies a long-standing confusion and controversy on the applicability of the pulse-delay photocuring technique for reducing the polymerization stress and promotes its potential clinical success for dental restorative composites.


Assuntos
Resinas Compostas , Estudos de Viabilidade , Teste de Materiais , Polimerização
2.
Dent Mater ; 36(2): 310-319, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866065

RESUMO

OBJECTIVE: To provide conditions for the validity of the exposure reciprocity law as it pertains to the photopolymerization of dimethacrylate-based dental composites. METHODS: Composites made from different mass ratios of resin blends (Bis-GMA/TEGDMA and UDMA/TEGDMA) and silanized micro-sized glass fillers were used. All the composites used camphorquinone and ethyl 4-dimethylaminobenzoate as the photo initiator system. A cantilever beam-based instrument (NIST SRI 6005) coupled with NIR spectroscopy and a microprobe thermocouple was used to simultaneously measure the degree of conversion (DC), the polymerization stress (PS) due to the shrinkage, and the temperature change (TC) in real time during the photocuring process. The instrument has an integrated LED light curing unit providing irradiances ranging from 0.01W/cm2 to 4W/cm2 at a peak wavelength of 460nm (blue light). Vickers hardness of the composites was also measured. RESULTS: For every dental composite there exists a minimum radiant exposure required for an adequate polymerization (i.e., insignificant increase in polymerization with any further increase in the radiant exposure). This minimum predominantly depends on the resin viscosity of composite and can be predicted using an empirical equation established based on the test results. If the radiant exposure is above this minimum, the exposure reciprocity law is valid with respect to DC for high-fill composites (filler contents >50% by mass) while invalid for low-fill composites (that are clinically irrelevant). SIGNIFICANCE: The study promotes better understanding on the applicability of the exposure reciprocity law for dental composites. It also provides a guidance for altering the radiant exposure, with the clinically available curing light unit, needed to adequately cure the dental composite in question.


Assuntos
Resinas Compostas , Materiais Dentários , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Polimerização , Viscosidade
3.
Rev Sci Instrum ; 89(3): 035102, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604748

RESUMO

An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.


Assuntos
Cimentos Ósseos/química , Teste de Materiais/instrumentação , Polimerização , Estresse Mecânico , Humanos , Fatores de Tempo
4.
Dent Mater ; 34(2): 228-237, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29113700

RESUMO

OBJECTIVE: The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. METHODS: New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (KIC) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (Wsp) and solubility (Wsu) (gravimetry); polymerization shrinkage (Sv; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. RESULTS: UDMA/TEG-DBVE composites exhibited n, E, Wsp, Wsu and Sv equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), KIC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in the experimental series (0.458GPa) were still above the clinically required threshold of approx. 0.4GPa. SIGNIFICANCE: Hydrolytic stability, composition-controlled polymerization and the overall enhancement in clinically-relevant properties of the new resin composites make them viable candidates to replace traditional resin composites as a new generation of strong and durable dental restoratives.


Assuntos
Resinas Acrílicas/química , Resinas Compostas/química , Metacrilatos/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Poliuretanos/química , Módulo de Elasticidade , Estética Dentária , Dureza , Hidrólise , Teste de Materiais , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...