Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(22): 12572-12585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683288

RESUMO

The development of Diamondback moth (DBM) depends on the ecdysis triggering hormone receptor (ETHR); a neuronal membrane G-protein coupled receptor (GPCR) connected to the metamorphosis cascade. Lepidopteran insect DBM is an infamous pest of cruciferous plants. This study examined the full-length coding sequences (CDS) of PxETHR-A and PxETHR-B from the DBM genome. The three-dimensional (3 D) models of both receptors were generated in an inactive state. The behaviour and stability of receptors were examined using molecular dynamics simulations in a lipid membrane system for 300 ns and established a GPCR family-based view. Secondary interactions within receptors were studied to know more about factors contributing to their stability. Multiple sequence alignment revealed conserved features of insect ETHRs those compared to the GPCR family proteins. These features were helpful during the evaluation of the molecular models of both receptors. Side-chain orientation of conserved residues, non-conserved and conserved hydrogen-bond networks (HBN) and hydrophobic clusters were examined in the structures of both receptors. The non-conserved residues L6.35, T6.39, C/S6.43, and L6.48, are present in a conserved position on the transmembrane helix-6 (TM6) of ETHRs. In TM6, PxETHR-A and PxETHR-B differ at positions C/S6.43 and Y/F6.51, both being part of the HBN.Communicated by Ramaswamy H. Sarma.


Assuntos
Muda , Mariposas , Animais , Sequência de Aminoácidos , Mariposas/genética , Receptores Acoplados a Proteínas G/genética , Simulação de Dinâmica Molecular , Mutação
2.
J Biomol Struct Dyn ; 40(3): 1416-1429, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33000693

RESUMO

Chitin synthase (CHS) is one of the crucial enzymes that play an essential role in chitin synthesis during the molting process, and it is considered to be the specific target to control insect pests. Currently, there are no potent inhibitors available in the market, which specifically target this enzyme. Pyrimidine nucleoside peptide, nikkomycin Z, binds to nucleotide-binding sites of fungal and insect CHS. But, their mode of action is still fragmentary due to the lack of a 3Dstructure of CHS. Chilo partellus is a severe pest insect of major food crops such as maize and sorghum, in an attempt to target integument expressed cuticular CpCHS. The CpChsA cDNA was cloned, and subsequently, their developmental and tissue-specific expression was studied. The 3D structure of the CHS catalytic domain was modeled, after which natural compounds were screened using a virtual screening workflow and resulted in the identification of five hit molecules. Molecular dynamics simulations were performed to investigate the dynamics and interactions of hits with CpCHS. The obtained results revealed that the compounds kasugamycin, rutin and robinin could act as potent inhibitors of CpCHS. All three molecules were observed to significantly reduce the chitin production as validated using in vitro and in vivo studies. Thus, this study aims to provide a set of novel inhibitor molecules against CpCHS for controlling the pest population. Communicated by Ramaswamy H. Sarma.


Assuntos
Quitina Sintase , Clonagem Molecular , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos , Mariposas , Animais , Quitina Sintase/antagonistas & inibidores , Quitina Sintase/genética , Quitina Sintase/metabolismo , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Fungos/enzimologia , Mariposas/enzimologia
3.
Int J Biol Macromol ; 189: 965-979, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34450153

RESUMO

Plasma membrane-bound receptor proteins play crucial roles in the perception and further transmission of regulatory signals to modulate numerous developmental and metabolic events. Precise functioning and fine-tuning of Nod factor receptor (NFR) mediated signalling is a critical requirement for root nodule symbiosis. Here, we have identified, cloned and phylogenetically characterized chickpea NFR1 and NFR5, which are showing significant homology with other legume NFR receptors. Homology modelling and molecular dynamics simulations highlight the molecular structure of ligand binding ectodomains [EDs] and cytosolic kinase domains [KDs] of NFRs in chickpea. Our detailed structural analysis also revealed that both NFR1 and NFR5 share resemblance as well as dissimilarity in sequence, structure and substrate-binding pocket. Further, molecular docking simulations provide us adequate insights into the active site of receptors where the Nod factor (NF) binds. The outcome of this work sheds light on the binding specificity of NFs towards NFRs and thus may significantly contribute to the design of new strategies in improving root-nodule symbiosis towards meeting the agricultural demands.


Assuntos
Cicer/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Filogenia , Domínios Proteicos
4.
Curr Comput Aided Drug Des ; 17(7): 881-895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33109065

RESUMO

INTRODUCTION: Insect growth and metamorphosis are strictly dependent on the structural changes that occur in chitin containing tissues and organs. Chitin synthase catalyzes chitin polymerization by ß-(1, 4) glycosidic linkage of N-acetyl-D-glucosamine (GlcNAc) monomers; the major component of insect cuticles. Targeting this enzyme could be a promising strategy to control insect pests while avoiding adverse effects on coexisting populations. Nikkomycin Z and polyoxins are commercially available fungal inhibitors known to bind to the nucleotide-binding sites of insects and fungal chitin synthase. But the binding mode of chitin synthase has not been explored to date as its structure is not available yet. METHODS: To understand the structural features of the Chilo partellus chitin synthase enzyme (CpCHS), the three-dimensional (3D) structure of the CpCHS catalytic domain was modeled using ROBETTA webserver. The obtained model was used to investigate the binding mode of its substrate, uridine diphosphate-N-acetyl-D-glucosamine (UDP-GlcNAc), and inhibitors (nikkomycin Z and polyoxins) by molecular docking approach using Schrödinger Suite-Maestro v9.2. The docked complexes were further investigated for their interaction stability by performing molecular dynamics (MD) simulations using GROMACS v5.1.2. RESULTS: Our study highlighted the significance of various interactions made by CHS residues present in the Walker-B loop and donor-binding motifs with the substrate (UDP-GlcNAc), and GEDR motif with an acceptor (GlcNAc). Also, the interactions of the QRRRW motif while forming chitin polymer were explored. We observed that the inhibitors exhibited good binding affinity with these motifs, indicated by their docking and binding affinity scores. CONCLUSION: In vitro analysis suggested that nikkomycin Z showed higher inhibition of chitin synthase activity at a concentration of 2.5 µg.L-1. Our study provided insights into the crucial interactions of chitin synthase while designing inhibitors against insect pests.


Assuntos
Quitina Sintase , Zea mays , Quitina , Fungos , Simulação de Acoplamento Molecular
5.
3 Biotech ; 10(6): 268, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32523862

RESUMO

Low phytate soybeans are desirable both from a nutritional and economic standpoint. Inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase (IPK1), optimizes the metabolic flux of phytate generation in soybean and thus shows much promise as a likely candidate for pathway regulation. In the present study, the differential spatial and temporal expression profiling of GmIpk1 and its two homologs Glyma06g03310 and Glyma04g03310 were carried out in Glycine max L. var Pusa 9712 revealing the early stages of seed development to be the potential target for gene manipulation. NCBI databank was screened using BLASTp to retrieve 32 plant IPK1 sequences showing high homology to GmIPK1 and its homologs. Bio-computational tools were employed to predict the protein's properties, conserved domains, and secondary structures. Using state-of-the-art in silico physicochemical approach, the three-dimensional (3D) GmIPK1 protein model (PMD ID-PM0079931), was developed based on Arabidopsis thaliana (PDB ID: 4AQK). Superimposition of 4AQK and best model of GmIPK1 revealed that the GmIPK1 aligned well and shows a sequence identity score of 54.32% with 4AQK and a low RMSD of 0.163 nm and almost similar structural features. The modeled structure was further refined considering the stereochemical geometry, energy and packing environment between the model and the template along with validation of its intrinsic dynamics. Molecular dynamics simulation studies of GmIPK1 were carried out to obtain structural insights and to understand the interactive behavior of this enzyme with ligands ADP and IP6. The results of this study provide some fundamental knowledge on the distinct mechanistic step performed by the key residues to elucidate the structure-function relationship of GmIPK1, as an initiative towards engineering "low phytate soybean".

6.
Biotechnol Appl Biochem ; 66(5): 880-899, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31397000

RESUMO

The present study was aimed to explore the molecular and structural features of UDP-N-acetylglucosamine pyrophosphorylase of Bombyx mori (BmUAP), an essential enzyme for chitin synthesis in insects. The BmUAP cDNA sequence was cloned and expression profiles were monitored during the molting and feeding stages of silkworm larvae. The effect of 20-hydroxyecdysone (20E) on BmUAP expression, and on silkworm molting was studied, which revealed that 20E regulates its expression. Multiple sequence alignment of various pyrophosphorylases revealed that the residues N223, G290, N327, and K407 of human UAP (PDB ID: 1JV1) were found to be highly conserved in BmUAP and all other eukaryotic UAPs considered for the study. Phylogenetic analysis inferred that the UAPs possess discrete variations in primary structure among different insect Orders while sharing good identity between species of the Order. The structure of BmUAP was predicted and its interactions with uridine triphosphate, N-acetylglucosamine-1-phosphate, and UDP-N-acetylglucosamine were analyzed. Virtual screening with a library of natural compounds resulted in five potential hits with good binding affinities. On further analysis, these five hits were found to be mimicking substrate and product, in inducing conformational changes in the active site. This work provides crucial information on molecular interactions and structural dynamics of insect UAPs.


Assuntos
Bombyx/enzimologia , Bombyx/genética , Clonagem Molecular , Simulação por Computador , Regulação Enzimológica da Expressão Gênica/genética , Simulação de Acoplamento Molecular , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Animais , Humanos , Nucleotidiltransferases/metabolismo , Conformação Proteica
7.
Bioinformation ; 14(8): 414-428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310249

RESUMO

Acetyl-cholinesterase enzyme (AChE) is a known target for identifying potential inhibitors against Alzheimer diseases (AD). Therefore, it is of interest to screen AChE with the CNS-BBB database. An AChE enzyme is a member of hydrolase family is activated by acetylcholine (ACh), so, targeting the AChE enzyme with the potential inhibitor may block the binding of the ACh. In this study we carried out virtual screening of drug-like molecules from Chemical Diversity Database particularly CNS-BBB compounds, to identify potential inhibitors using Glide docking program. Top ranking ten compounds, which have lower Glide Score when compared to known drugs (Tacrine and Galantamine) for AChE. For top three molecules MD simulation was carried out and calculated binding free energy. We report the best binding compounds with AChE compared to known drugs (Taine and Galantamine) for AD. We further document the salient features of their molecular interaction with the known target. Three molecules (1-benzyl-3-(2- hydroxyethyl)-N-[2-(3-pyridyl)ethyl]-3-pyrrolidinecarboxamide, N-{3[benzyl(methyl)amino]propyl}-1,5-dimethyl-4-oxo-4,5-dihydro- 1H-pyrrolo[3,2-c]quinoline-2-carboxamide, and 6-chloro-N-[2-(diethylamino)-2-phenylethyl]-4-oxo-4H-chromene-2-carboxamide) have -196.36, -204.27, -214.40 kJ/mol, binding free energy values respectively which are much lower than values calculated for the reference ligands Tacrine and Galantamine having -119.65 and -142.18 kJ/mol respectively. Thus these molecules can be very novel potential inhibitors against AChE involved in Alzheimer's disease.

8.
J Recept Signal Transduct Res ; 38(1): 1-11, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29041842

RESUMO

Mammalian lethal with SEC13 protein 8 (mLST8), is an indispensable protein subunit of mammalian target of rapamycin (mTOR) signaling pathway that interacts with the kinase domain of mTOR protein, thereby stabilizing its active site. Experimental studies reported the over expression of mLST8 in human colon and prostate cancers by activation of both mTORC1/2 complexes and subsequent downstream substrates leading to tumor progression. Considering its role, targeting mLST8 protein would be a therapeutic approach against tumor progression in colon and prostate cancers. Hence, using in silico structure based drug design approach, the comparative binding patterns of 1,1'-binapthyl-2,2'diol (BINOL), 1-(2-carboxynaphth-1yl)-2-naphthoic acid (SCF-12) and their analogs in the cavity of mLST8 were explored. ADME and binding energy calculations led to the identification of five compounds with favorable Glide (G) scores and implicated the importance of Asn132 and Gln225 as key binding residues. Molecular dynamics (MD) simulations and free energy landscape (FEL) approaches helped in elucidating the binding mechanism and suggested the possibility of ligands 1-3 namely, ZINC01765622, ZINC62723702 and ZINC02576980 to be promising antagonists for mLST8. Thus, this study substantiates the prospect of targeting mLST8 protein using potent hits which could hinder tumor progression in colon and prostate cancers.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Naftóis/química , Neoplasias da Próstata/tratamento farmacológico , Homólogo LST8 da Proteína Associada a mTOR/química , Ácidos Carboxílicos/química , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Desenho de Fármacos , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Naftalenos/química , Naftóis/farmacologia , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Homólogo LST8 da Proteína Associada a mTOR/antagonistas & inibidores
9.
Chem Biol Drug Des ; 88(1): 43-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26833890

RESUMO

Alzheimer's disease onset and progression are associated with the dysregulation of multiple and complex physiological processes, and a successful therapeutic approach should therefore address more than one target. In line with this modern paradigm, a series of 8-imino-2-oxo-2H,8H-pyrano[2,3-f]chromene analogs (4a-q) were synthesized and evaluated for their multitarget-directed activity on acetylcholinesterase, butyrylcholinesterase (BuChE), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, and amyloid-ß peptide (Aß) specific targets for Alzheimer's disease therapy. Most of the synthesized compounds showed remarkable acetylcholinesterase inhibitory activities in low nm concentrations and good ABTS radical scavenging activity, however, no evidence of BuChE inhibitory activity. Among them, 3-bromobenzylamide derivative 4m exhibited the best acetylcholinesterase inhibitory activity with IC50 value of 13 ± 1.4 nm which is 51-fold superior to galantamine, a reference drug. Kinetic and molecular docking studies indicated 4m as mixed-type inhibitor, binding simultaneously to catalytic active and peripheral anionic sites of acetylcholinesterase. Five compounds 4e, 4f, 4g, 4j, and 4k have shown 1.4- to 2.5-fold of higher antioxidant activities than trolox. Interestingly, the most active compound 4m demonstrated dosage-dependent acceleration of Aß1-42 aggregation, which may reduce toxicity of oligomers. Overall, these results lead to discovery of fused tricyclic coumarins as promising dual binding site inhibitors of acetylcholinesterase and afford multifunctional compounds with potential impact for further pharmacological development in Alzheimer's therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Butirilcolinesterase/química , Inibidores da Colinesterase , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Benzopiranos/síntese química , Benzopiranos/química , Benzopiranos/uso terapêutico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/uso terapêutico , Humanos , Simulação de Acoplamento Molecular
10.
3 Biotech ; 6(1): 113, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330183

RESUMO

This study reports purification and characterization of lipoxygenase protein from mung bean germinating seedlings. Lipoxygenases (LOXs) are key enzymes in seed germination. The purified mung bean LOX has resolved into two peaks by chromatofocusing, one has highest LOX activity with an isoelectric point of 5.84 and the other has lowest LOX activity with an isoelectric point of 5.52. The purified LOX has molecular mass of approximately 97 kDa and showed high activity with linoleic acid than linolenic acid and arachidonic acid. The optimal activity of LOX was observed at pH 6.5 and temperature 35 °C. Far-UV circular dichroism (CD) studies revealed that the purified mung bean LOX possess secondary structural elements with significant α-helix and ß-strands. Further, the secondary structure of mung bean LOX was stable up to 60 °C at pH 6.5. Biophysical and chemical properties of the mung bean LOX are similar to the other legume LOXs and may be considered as type-1 LOX.

11.
Eur J Med Chem ; 107: 219-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26588065

RESUMO

A series of fused tricyclic coumarin derivatives bearing iminopyran ring connected to various amido moieties were developed as potential multifunctional anti-Alzheimer agents for their cholinesterase inhibitory and radical scavenging activities. In vitro studies revealed that most of these compounds exhibited high inhibitory activity on acetylcholinesterase (AChE), with IC50 values ranging from 0.003 to 0.357 µM which is 2-220 folds more potent than the positive control, galantamine. Their inhibition selectivity against AChE over butyrylcholinesterase (BuChE) has increased about 194 fold compared with galantamine. The developed compounds also showed potent ABTS radical scavenging activity (IC50 7.98-15.99 µM). Specifically, the most potent AChE inhibitor 6n (IC50 0.003 ± 0.0007 µM) has an excellent antioxidant profile as determined by the ABTS method (IC50 7.98 ± 0.77 µM). Moreover, cell viability studies in SK N SH cells showed that the compounds 6m-q have significant neuroprotective effects against H2O2-induced cell death, and are not neurotoxic at all concentrations except 6n and 6q. The kinetic analysis of compound 6n proved that it is a mixed-type inhibitor for EeAChE (Ki1 0.0103 µM and Ki2 0.0193 µM). Accordingly, the molecular modeling study demonstrated that 6m-q with substituted benzyl amido moiety possessed an optimal docking pose with interactions at catalytic active site (CAS) and peripheral anionic site (PAS) of AChE simultaneously and thereby they might prevent aggregation of Aß induced by AChE. Furthermore, in silico ADMET prediction studies indicated that these compounds satisfied all the characteristics of CNS acting drugs. Most active inhibitor 6n is permeable to BBB as determined in the in vivo brain AChE activity. To sum up, the multipotent therapuetic profile of these novel tricyclic coumarins makes them promising leads for developing anti-Alzheimer agents.


Assuntos
Cumarínicos/química , Cumarínicos/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Sítios de Ligação , Butirilcolinesterase/metabolismo , Técnicas de Química Sintética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Cumarínicos/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Galantamina/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos Endogâmicos BALB C , Modelos Moleculares , Fármacos Neuroprotetores/síntese química , Síndromes Neurotóxicas/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA