Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535259

RESUMO

Bone regeneration poses a significant challenge in the field of tissue engineering, prompting ongoing research to explore innovative strategies for effective bone healing. The integration of stem cells and nanomaterial scaffolds has emerged as a promising approach, offering the potential to enhance regenerative outcomes. This study focuses on the application of a stem cell-laden nanomaterial scaffold designed for bone regeneration in rabbits. The in vivo study was conducted on thirty-six healthy skeletally mature New Zealand white rabbits that were randomly allocated into six groups. Group A was considered the control, wherein a 15 mm critical-sized defect was created and left as such without any treatment. In group B, this defect was filled with a polycaprolactone-hydroxyapatite (PCL + HAP) scaffold, whereas in group C, a PCL + HAP-carboxylated multiwalled carbon nanotube (PCL + HAP + MWCNT-COOH) scaffold was used. In group D, a PCL + HAP + MWCNT-COOH scaffold was used with local injection of bone morphogenetic protein-2 (BMP-2) on postoperative days 30, 45, and 60. The rabbit bone marrow-derived mesenchymal stem cells (rBMSCs) were seeded onto the PCL + HAP + MWCNT-COOH scaffold by the centrifugal method. In group E, an rBMSC-seeded PCL + HAP + MWCNT-COOH scaffold was used along with the local injection of rBMSC on postoperative days 7, 14, and 21. For group F, in addition to the treatment given to group E, BMP-2 was administered locally on postoperative days 30, 45, and 60. Gross observations, radiological observation, scanning electron microscopic assessment, and histological evaluation study showed that group F displayed the best healing properties, followed by group E, group D, group C, and B. Group A showed no healing with ends blunting minimal fibrous tissue. Incorporating growth factor BMP-2 in tissue-engineered rBMSC-loaded nanocomposite PCL + HAP + MWCNT-COOH construct can augment the osteoinductive and osteoconductive properties, thereby enhancing the healing in a critical-sized bone defect. This novel stem cell composite could prove worthy in the treatment of non-union and delayed union fractures in the near future.

2.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474368

RESUMO

Liver cirrhosis poses a global health challenge marked by significant prevalence and mortality. Current therapeutic options are limited by high costs and immune-mediated rejection, necessitating the exploration of innovative strategies to enhance hepatic self-rehabilitation, and counteract the underlying pathological mechanisms. We evaluated the hepatoprotective activity of rat adipose-derived mesenchymal stem cells (ADMSCs) in combination with platelet-rich plasma (PRP) and recombinant human hepatocyte growth factor (rh-HGF) on a rat model of liver fibrosis/cirrhosis induced by bile duct ligation (BDL). Treatment with PRP or rh-HGF alone did not yield significant hepatoprotection in the BDL-induced liver cirrhosis model. However, ADMSC transplantation alone exhibited the potential to alleviate impaired liver conditions. The combination of PRP and rh-HGF demonstrated superior ameliorative effects compared to either treatment alone. Notably, the combination of ADMSC + PRP or ADMSC + rh-HGF significantly enhanced hepatoprotective capacity compared to individual or combined PRP and rh-HGF therapies. Injection of ADMSC via the tail vein reduced inflammation, hepatocyte damage, and collagen deposition, improving overall liver function. This improvement was more pronounced when ADMSC was administered with PRP and rh-HGF versus monotherapy. Our study concludes that ADMSCs exert antifibrotic effects by inhibiting hepatic stellate cell proliferation, collagen synthesis, and inducing apoptosis. ADMSCs also demonstrate immune-modulatory effects and transdifferentiate into hepatic progenitor cells, secreting trophic factors, cytokines, and chemokines that promote impaired liver regeneration. The observed arrest in liver fibrosis progression highlights the potential therapeutic impact of these interventions.


Assuntos
Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Ratos , Humanos , Animais , Cirrose Hepática/metabolismo , Fibrose , Ductos Biliares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Plasma Rico em Plaquetas/metabolismo
3.
Tissue Cell ; 82: 102053, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907044

RESUMO

The present study evaluated healing potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and BM-MSCs-conditioned medium (BM-MSCs-CM) for acute and subacute injuries in the rabbit peripheral nerve injury model. The regenerative capacity of MSCs was evaluated in 40 rabbits divided into eight groups, four groups each for acute and subacute injury models. BM-MSCs and BM-MSCS-CM were prepared by isolating allogenic bone marrow from the iliac crest. After inducing sciatic nerve crush injury, different treatments consisting of PBS, Laminin, BM-MSCs + laminin, and BM-MSCS-CM + laminin were used on the day of injury in the acute injury model and after ten days of crush injury in the subacute groups. The parameters studied included: pain, total neurological score, gastrocnemius muscle weight and volume ratio, histopathology of the sciatic nerve and gastrocnemius muscle, and scanning electron microscopy (SEM). Findings indicate that BM-MSCs and BM-MSCS-CM have augmented the regenerative capacity in acute and subacute injury groups with a slightly better improvement in the subacute groups than the animals in acute injury groups. Histopathology data revealed different levels of regenerative process undergoing in the nerve. Neurological observations, gastrocnemius muscle evaluation, muscle histopathology, and the SEM results depicted better healing in animals treated with BM-MSCs and BM-MSCS-CM. With this data, it could be concluded that BM-MSCs support the healing of injured peripheral nerves, and the BM-MSCS-CM does accelerate the healing of acute and subacute peripheral nerve injuries in rabbits. However, stem cell therapy may be indicated during the subacute phase for better results.


Assuntos
Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Animais , Coelhos , Meios de Cultivo Condicionados/farmacologia , Traumatismos dos Nervos Periféricos/terapia , Laminina , Medula Óssea
4.
Cell Physiol Biochem ; 55(6): 739-760, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34816679

RESUMO

BACKGROUND/AIMS: Liver is considered as the vital organ in the body as it performs various essential functions. Following an injury to the liver, the repair process even though initially beneficial becomes pathogenic when it is not controlled appropriately. Extensive accumulation of extracellular matrix (ECM) components can ultimately lead to cirrhosis and liver failure. Thus, the ideal strategy to treat a liver injury is to generate new hepatocytes replacing damaged cells without causing excessive ECM deposition. The objective of this study was to evaluate the potential of mesenchymal stem cells, conditioned media and murine epidermal growth factor (m-EGF) in liver regeneration following partial hepatectomy in a rat model. METHODS: The animals were anaesthetized and a midline laparotomy was done. The liver was exposed and the left lateral and median lobes were ligated and resected out (about 65-70% of total liver mass). The muscles and skin were sutured in routine fashion and thus the rat model of partial hepatectomy was prepared. The animal models were equally distributed into 4 different groups namely A, B, C and D and treated with PBS, conditioned media, mesenchymal stem cells and epidermal growth factor respectively. The liver regeneration was assessed based on clinical, haemato-biochemical, colour imaging, histopathological and immune-histochemical parameters. RESULTS: Partial hepatectomy model with surgical removal of 65-70% liver lobe was standardized and successfully used in this study. Alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), bilirubin, transaminases were significantly higher (P<0.05) in group A indicating that the liver damage was not restored properly. Colour digital imaging, histopathological and immune-histochemistry observations revealed that a better liver regeneration was observed in groups C and D, followed by groups B and A. Regeneration coefficient calculated based on liver weight was higher in groups C and D as compared to group A. CONCLUSION: Rat bone marrow-derived mesenchymal stem cells were found to induce hepatocytes proliferation; whereas EGF induced more angiogenesis. Conditioned media was not as effective as stem cells and EGF in liver tissue repair.


Assuntos
Hepatectomia , Regeneração Hepática/efeitos dos fármacos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Meios de Cultivo Condicionados/farmacologia , Feminino , Fígado/cirurgia , Masculino , Ratos , Ratos Wistar
5.
Tissue Eng Regen Med ; 18(2): 235-251, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33145744

RESUMO

BACKGROUND: Full thickness burn wounds are lack of angiogenesis, cell migration, epithelialisation and finally scar tissue formation. Tissue engineered composite graft can provide sustained release of growth factor and promote the wound healing by cell migration, early angiogenesis and proliferation of extracellular matrix and wound remodeling. The objective of this study was to evaluate the gene embedded (pDNA-platelet-derived growth factor, PDGF-B) porcine acellular urinary bladder matrix with transfected mesenchymal stem cells (rBMSC) on healing of full thickness burn wound in rat model. METHODS: Full thickness burn wound of 2 × 2 cm size was created in dorsum of rat model under general anesthesia. Burn wounds were treated with silver sulfadiazine; porcine acellular urinary bladder matrix (PAUBM); PAUBM transfected with pDNA-PDGF-B; PAUBM seeded with rBMSC; PAUBM seeded with rBMSC transfected with pDNA-PDGF-B in groups A, B, C, D and E respectively. The wound healing was assessed based on clinical, macroscopically, immunologically, histopathological and RT-qPCR parameters. RESULTS: Wound was significantly healed in group E and group D with early extracellular matrix deposition, enhanced granulation tissue formation and early angiogenesis compared to all other groups. The immunologic response against porcine acellular matrix showed that PDGF-B gene activated matrix along with stem cell group showed less antibody titer against acellular matrix than other groups in all intervals. PDGF gene activated matrix releasing the PDGF-B and promote the healing of full thickness burn wound with neovascularization and neo tissue formation. PDGF gene also enhances secretion of other growth factors results in PDGF mediated regenerative activities. This was confirmed in RT-qPCR at various time intervals. CONCLUSION: Gene activated matrix encoded for PDGF-B protein transfected stem cells have been clinically proven for early acceleration of angiogenesis and tissue regeneration in burn wounds in rat models. Evaluation of PDGF-B gene-activated acellular matrix and mesenchymal stem cell in full thickness skin burn wound in rat.


Assuntos
Derme Acelular , Queimaduras , Transplante de Células-Tronco Mesenquimais , Animais , Queimaduras/terapia , Fator de Crescimento Derivado de Plaquetas/genética , Ratos , Suínos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...