Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 101(49): e32206, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626519

RESUMO

Vertical mandibular invasion of lower gingival squamous cell carcinoma (LGSCC) determines the method of resection, which significantly affects the patient's quality of life. Therefore, in mandibular invasion by LGSCC, it is extremely important to monitor progression, specifically whether invasion is limited to the cortical bone or has progressed to the bone marrow. This retrospective study aimed to identify the diagnostic and predictive parameters for mandibular invasion, particularly vertical invasion, to enable appropriate selection of the method of mandibular resection. Of the patients who underwent surgery for LGSCC between 2009 and 2017, 64 were eligible for participation in the study based on tissue microarrays (TMA) from surgical specimens. This study analyzed morphological features using computed tomography (CT), and metabolic characteristics using maximum standardized uptake value (SUVmax), peak value of SUV (SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Moreover, immunohistochemical analysis of proteins, including parathyroid hormone-related protein (PTHrP), interleukin-6 (IL-6), E-cadherin, and programmed cell death-1 ligand 1 (PD-L1), was performed. Statistical analysis was performed using univariate logistic regression analysis with the forward selection method. The present study showed that MTV (≥2.9 cm3) was an independent diagnostic and predictive factor for positivity of mandibular invasion. Additionally, TLG (≥53.9 bw/cm3) was an independent diagnostic and predictive factor for progression to bone marrow invasion. This study demonstrated that in addition to morphological imaging by CT, the volume-based parameters of MTV and TLG on fluorine-18 fluorodeoxyglucose positron emission tomography were important for predicting pathological mandibular invasion in patients with LGSCC. A more accurate preoperative diagnosis of vertical mandibular invasion would enable the selection of appropriate surgical procedure for mandibular resection.


Assuntos
Neoplasias Gengivais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Fluordesoxiglucose F18 , Imagem Multimodal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Qualidade de Vida , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Carga Tumoral , Neoplasias Gengivais/diagnóstico por imagem , Neoplasias Gengivais/cirurgia
2.
Nucl Med Biol ; 104-105: 47-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34896813

RESUMO

INTRODUCTION: 3-[18F]fluoro-α-methyl-L-tyrosine ([18F]FAMT) is a promising amino acid tracer targeting L-type amino acid transporter 1 (LAT1). One concern regarding the diagnosis using [18F]FAMT is the possibility of false-negative findings because of its relatively low accumulation level even in malignant tumors. Moreover, preloading probenecid, an organic anion transporter inhibitor, markedly increased the tumor accumulation level of radioiodine-labeled α-methyltyrosine. In this study, we evaluated the usefulness of preloading probenecid in improving the tumor-imaging capability of [18F]FAMT. METHODS: Three biodistribution studies of [18F]FAMT were conducted in normal mice to elucidate the usefulness of probenecid preloading. Later, a biodistribution study and positron emission tomography (PET) imaging of [18F]FAMT were conducted with or without probenecid injection in tumor-bearing mice. RESULTS: Probenecid preloading significantly delayed blood clearance and consequently enhanced the accumulation of [18F]FAMT in the pancreas, a LAT1-positive organ. The effects of probenecid preloading were independent of the administration route. Tumor accumulation level in the biodistribution study and the maximum standardized uptake value in tumors on PET imaging of the probenecid preloading group were significantly higher than those of the control (without probenecid injection) group in tumor-bearing mice. CONCLUSIONS: Preloading probenecid significantly delayed blood clearance and consequently enhanced the accumulation of [18F]FAMT in tumors. These results indicate that preloading probenecid could improve the diagnostic accuracy of [18F]FAMT.


Assuntos
Neoplasias , Probenecid , Animais , Radioisótopos do Iodo , Camundongos , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , alfa-Metiltirosina/metabolismo
3.
Ann Nucl Med ; 33(10): 733-739, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31297699

RESUMO

OBJECTIVE: Early detection plays a role in the prognosis of melanoma, the most aggressive skin cancer. 64Cu- and 68Ga-labeled alpha-melanocyte-stimulating hormone (α-MSH) analogs targeting the melanocortin-1 receptor are promising positron emission tomography (PET) tracers for detecting melanoma, and the use of 18F-labeling will further contribute to the detectability and availability. However, the high radiochemistry demand related to the conventional 18F-labeling methods has restricted the development of 18F-labeled α-MSH analogs. A recently developed radiofluorination method using aluminum-fluoride (Al18F) offers a simple, efficient, and time-saving labeling procedure compared to the conventional 18F-labeling methods. Herein, we sought to establish a simple preparation method for an 18F-labeled α-MSH analog using Al18F, and we examined its potential for the early detection of melanoma. METHODS: A 1,4,7-triazacyclononane-N,N',N″-triacetic acid (NOTA)-conjugated α-MSH analog (NOTA-GGNle-CycMSHhex) was prepared by the Fmoc solid-phase strategy. NOTA-GGNle-CycMSHhex was labeled with Al18F by heating at 105 °C using a microwave synthesizer for 15 min. Biodistribution study was conducted on B16/F10-luc melanoma-bearing mice at 30 min, 1 h and 3 h after injection of Al18F-NOTA-GGNle-CycMSHhex. PET imaging was conducted on melanoma-bearing mice at 1 h post-injection. One day prior to the PET imaging, bioluminescence imaging was also performed. RESULTS: Al18F-NOTA-GGNle-CycMSHhex was readily prepared with a high radiochemical yield (94.0 ± 2.8%). The biodistribution study showed a high accumulation of Al18F-NOTA-GGNle-CycMSHhex in the tumor at 30 min and 1 h post-injection (6.69 ± 1.49 and 7.70 ± 1.71%ID/g, respectively). The tumor-to-blood ratio increased with time: 3.46 ± 0.89, 12.67 ± 1.29, and 35.27 ± 9.12 at 30 min, 1 h, and 3 h post-injection, respectively. In the PET imaging, Al18F-NOTA-GGNle-CycMSHhex clearly visualized the tumors and depicted very small tumors (< 3 mm). CONCLUSIONS: We successfully prepared Al18F-NOTA-GGNle-CycMSHhex in a simple and efficient manner. Al18F-NOTA-GGNle-CycMSHhex showed high tumor accumulation and clearly visualized very small tumors in melanoma-bearing mice. These findings suggest that Al18F-NOTA-GGNle-CycMSHhex will be a promising PET tracer for melanoma imaging at an earlier stage.


Assuntos
Detecção Precoce de Câncer , Radioisótopos de Flúor , Melanoma Experimental/diagnóstico , alfa-MSH/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel/química , Marcação por Isótopo , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/metabolismo , Camundongos , Oligopeptídeos/química , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , alfa-MSH/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA