Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(5): 2667-2680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37154583

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive kind of breast cancer known to mankind. It is a heterogeneous disease that is formed due to the missing estrogen, progesterone and human epidermal growth factor 2 receptors. Poly(ADP-ribose) polymerase-1 (PARP-1) protein helps in the development of TNBC by repairing the cancer cells, which proliferate and spread metastatically. To determine the potential PARP-1 inhibitors (PARPi), 0.2 million natural products from Universal Natural Product Database were screened using molecular docking and six hit compounds were selected based on their binding affinity towards PARP-1. The bio-availability and drug-like properties of these natural products were evaluated using ADMET analysis. Molecular dynamics simulations were conducted for these complexes for 200 ns to examine their structural stability and dynamic behaviour and further compared with the complex of talazoparib (TALA), an FDA-approved PARPi. Using MM/PBSA calculations, we conclude that the complexes HIT-3 and HIT-5 (-25.64 and -23.14 kcal/mol, respectively) show stronger binding energies with PARP-1 than TALA with PARP-1 (-10.74 kcal/mol). Strong interactions were observed between the compounds and hotspot residues, Asp770, Ala880, Tyr889, Tyr896, Ala898, Asp899 and Tyr907, of PARP-1 due to the existence of various types of non-covalent interactions between the compounds and PARP-1. This research offers critical information about PARPi, which could potentially be incorporated into the treatment of TNBC. Moreover, these findings were validated by comparing them with an FDA-approved PARPi.


Assuntos
Produtos Biológicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Simulação de Acoplamento Molecular , Proteína BRCA1 , Indóis/farmacologia , Produtos Biológicos/farmacologia
2.
J Biomol Struct Dyn ; 41(19): 9492-9502, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369945

RESUMO

A class I histone deacetylase HDAC8 is associated with several diseases, including cancer, intellectual impairment and parasite infection. Most of the HDAC inhibitors that have so far been found to inhibit HDAC8 limit their efficacy in the clinic by producing toxicities. It is therefore very desirable to develop specific HDAC8 inhibitors. The emergence of HDAC inhibitors derived from natural sources has become quite popular. In recent decades, it has been shown that naturally occurring HDAC inhibitors have strong anticancer properties. A total of 0.2 million natural compounds were screened against HDAC8 from the Universal Natural Product Database (UNPD). Molecular docking was performed for these natural compounds and the top six hits were obtained. In addition, molecular dynamics (MD) simulations were used to evaluate the structural stability and binding affinity of the inhibitors, which showed that the protein-ligand complexes remained stable throughout the 100 ns simulation. MM-PBSA method demonstrated that the selected compounds have high affinity towards HDAC8. We infer from our findings that Hit-1 (-29.35 kcal mol-1), Hit-2 (-29.15 kcal mol-1) and Hit-6 (-30.28 kcal mol-1) have better binding affinity and adhesion to ADMET (absorption, distribution, metabolism, excretion and toxicity) characteristics against HDAC8. To compare our discussions and result in an effective way. We performed molecular docking, MD and MM-PBSA analysis for the FDA-approved drug romidepsin. The above results show that our hits show better binding affinity than the compound romidepsin (-12.03 ± 4.66 kcal mol-1). The important hotspot residues Asp29, Ile34, Trp141, Phe152, Asp267, Met274 and Tyr306 have significantly contributed to the protein-ligand interaction. These findings suggest that in vitro testing and additional optimization may lead to the development of HDAC8 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Ensaios de Triagem em Larga Escala , Inibidores de Histona Desacetilases , Simulação de Acoplamento Molecular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ligantes , Simulação de Dinâmica Molecular
3.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956982

RESUMO

Choline geranate (CAGE) ionic liquids (ILs) stabilize insulin, thereby aiding its oral delivery, whereas ethanol (EtOH) affects its stability by disrupting the hydrophobic interactions. In this study, cognizance of the stabilization mechanism of insulin dimer in the presence of both CAGE ILs and EtOH mixtures is achieved through biased and unbiased molecular dynamics (MD) simulations. Here, two order parameters are employed to study the insulin dimer dissociation using well-tempered metadynamics (WT-MetaD). The stability of insulin is found to be strongly maintained until a 0.20 mole fraction of EtOH. Besides, higher concentrations of EtOH marginally affect the insulin stability. Moreover, geranate anions form a higher number of H-bonding interactions with water molecules, which aids insulin stabilization. Conversely, the addition of EtOH minimizes the water-mediated H-bonding interactions of geranate. Additionally, geranate traps the EtOH molecules, thereby preventing the interactions between insulin and EtOH. Furthermore, the free energy landscape (FEL) reveals the absence of dimer dissociation along with noticeable deviations in the distances R and the number of contacts Q. The dimerization free energy of insulin was calculated to be -16.1 kcal/mol at a 0.20 mole fraction of EtOH. Moreover, increments in mole fractions of EtOH effectuate a decrease in the insulin stability. Thus, the present study represents CAGE ILs as efficient insulin dimer stabilizes at low concentrations of EtOH.


Assuntos
Líquidos Iônicos , Colina/química , Etanol , Insulina , Líquidos Iônicos/química , Água/química
4.
Front Chem ; 10: 754269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615307

RESUMO

L-Ascorbic acid (ASC), commonly known as vitamin C, acts as an anti-oxidant in the biological system. It is extensively used as an excipient in pharmaceutical industry, food supplements in fruit juices, and food materials due to its free radicals scavenging activity. Main drawback of ASC is its poor aqueous stability owing to the presence of lactone moiety that is easily oxidized to dehydroascorbic acid and further degraded. To improve aqueous stability and inhibit oxidative degradation, ASC was co-crystallized to constitute binary eutectic compositions with mono and di-saccharides such as glucose, sucrose, lactose, and mannitol. The eutectics were confirmed by their (single) lower melting endotherm compared to ASC and sugars, although Powder X-ray diffraction (PXRD) and Fourier transform Infrared spectroscopy (FT-IR) data confirmed the characteristics of their physical mixture. Scanning electron microscope (SEM) images of the binary eutectics confirmed their irregular morphology. The ASC eutectics exhibited improved shelf-life by 2-5-fold in weakly acidic (pH 5) and neutral (pH 7) aqueous buffer medium, whereas the eutectic with glucose enhanced shelf-life only by 1.1-1.2-fold in acidic medium (pH 3.3 and 4). Notably, stabilizing effect of the sugar eutectics decreased with increasing acidity of the medium. In addition, higher binding energy of the disaccharide eutectics partially supports the aqueous stability order of ASC in the neutral pH medium due to more number of non-bonded interactions than that of monosaccharides.

5.
RSC Adv ; 12(6): 3687-3695, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425367

RESUMO

The recalcitrant spread of the COVID-19 pandemic produced by the novel coronavirus SARS-CoV-2 is one of the most destructive occurrences in history. Despite the availability of several effective vaccinations and their widespread use, this line of immunization often faces questions about its long-term efficacy. Since coronaviruses rapidly change, and multiple SARS-CoV-2 variants have emerged around the world. Therefore, finding a new target-based medication became a priority to prevent and control COVID-19 infections. The main protease (Mpro) is a salient enzyme in coronaviruses that plays a vital role in viral replication, making it a fascinating therapeutic target for SARS-CoV-2. We screened 0.2 million natural products against the Mpro of SARS-CoV-2 using the Universal Natural Product Database (UNPD). As well, we studied the role of ionic liquids (ILs) on the structural stabilization of Mpro. Cholinium-based ILs are biocompatible and used for a variety of biomedical applications. Molecular docking was employed for the initial screening of natural products and ILs against Mpro. To predict the drug-likeness features of lead compounds, we calculated the ADMET properties. We performed MD simulations for the selected complexes based on the docking outcomes. Using MM/PBSA approaches, we conclude that compounds NP-Hit2 (-25.6 kcal mol-1) and NP-Hit3 (-25.3 kcal mol-1) show stronger binding affinity with Mpro. The hotspot residues of Thr25, Leu27, His41, Met49, Cys145, Met165, and Gln189 strongly interacted with the natural compounds. Furthermore, naproxenate, ketoprofenate, and geranate, cholinium-based ILs strongly interact with Mpro and these ILs have antimicrobial properties. Our findings will aid in the development of effective Mpro inhibitors.

6.
Chemosphere ; 286(Pt 1): 131612, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325262

RESUMO

We use first principle approaches to study the adsorption and catalytic activation mechanism of CO2 on ionic liquids (ILs, [CnMIm]+[Cl]- (n = 0-6)) attached to a Au(111) surface. The adsorption of CO2 at this liquid-solid model interface occurs via either (i) parallel π-stacking mode or (ii) CO2 oxygen lone pair (lp)···π interaction. These CO2 physisorption modes, which depend on the CO2 landing angle at this interface, are identified as an efficient way to activate CO2 and its further conversion into value-added products. For illustration, we discuss the conversion of CO2 into formic acid where the ILs@Au(111) decorated interface allows reduction of the activation energy for the CO2 + H2 → HCOOH reaction. In sum, our electrode/electrolyte based interface model provides valuable information to design novel heterogeneous catalysts for CO2 conversion. Indeed, our work establishes that a suitable interface material is enough to activate CO2.


Assuntos
Líquidos Iônicos , Adsorção , Dióxido de Carbono , Catálise , Oxigênio
7.
Phys Chem Chem Phys ; 23(44): 25298-25307, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34746944

RESUMO

Insulin is a principal hormone that is involved in the regulation of glucose levels in the blood. Oral insulin formulation is a recent development in drug delivery systems. Biocompatible choline-based ionic liquids (ILs) show promising antibacterial activity and are useful for oral and transdermal drug delivery applications. Choline and geranate (CAGE) ILs enhance the stability and oral efficacy of insulin delivery. The molecular mechanism behind insulin formulation in the oral form is at issue. In the present work, the molecular-level understanding of CAGE ILs in insulin is scrutinized by employing atomistic molecular dynamics (MD) simulations. To identify the stability of insulin in an IL medium, we have studied a series of concentration (mole fraction 0.05-1.00) of CAGE ILs with an insulin dimer. It can be well evidenced from the experimental reports that in an aqueous medium, there is a refashioning of CAGE nanostructures at 0.50 mole fraction. It is found from our calculations that the first solvation shell of insulin is readily occupied by choline and geranate ions in the presence of water. Moreover, the geranate ions strongly interacted with the water molecules and thereby, eliminating the intermolecular hydrogen bonding (H-bonding) interactions towards the insulin at 0.30-0.50 mole fraction of CAGE ILs. The most desirable 0.30-0.50 mole fraction of CAGE invigorates water-mediated H-bonding interactions with geranate ions, which also enhances the electrostatic behavior around the vicinity of the insulin dimer. These important findings can help in the development of oral insulin drug delivery and related applications.


Assuntos
Colina/química , Insulina/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Composição de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA