Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1157507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035067

RESUMO

Breeding staple crops with increased micronutrient concentration is a sustainable approach to address micronutrient malnutrition. We carried out Multi-Cross QTL analysis and Inclusive Composite Interval Mapping for 11 agronomic, yield and biofortification traits using four connected RILs populations of rice. Overall, MC-156 QTLs were detected for agronomic (115) and biofortification (41) traits, which were higher in number but smaller in effects compared to single population analysis. The MC-QTL analysis was able to detect important QTLs viz: qZn5.2, qFe7.1, qGY10.1, qDF7.1, qPH1.1, qNT4.1, qPT4.1, qPL1.2, qTGW5.1, qGL3.1 , and qGW6.1 , which can be used in rice genomics assisted breeding. A major QTL (qZn5.2 ) for grain Zn concentration has been detected on chromosome 5 that accounted for 13% of R2. In all, 26 QTL clusters were identified on different chromosomes. qPH6.1 epistatically interacted with qZn5.1 and qGY6.2 . Most of QTLs were co-located with functionally related candidate genes indicating the accuracy of QTL mapping. The genomic region of qZn5.2 was co-located with putative genes such as OsZIP5, OsZIP9, and LOC_OS05G40490 that are involved in Zn uptake. These genes included polymorphic functional SNPs, and their promoter regions were enriched with cis-regulatory elements involved in plant growth and development, and biotic and abiotic stress tolerance. Major effect QTL identified for biofortification and agronomic traits can be utilized in breeding for Zn biofortified rice varieties.

2.
Front Nutr ; 6: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231657

RESUMO

The Philippines is one of the major rice-producing and rice-consuming countries of Asia. A large portion of its population depends on rice for their daily caloric intake and nutritional needs. The lack of dietary diversity among poor communities has led to nutritional consequences, particularly micronutrient deficiencies. Iron-deficiency anemia (IDA) and zinc deficiency (ZnD) are two serious nutritional problems that affect the health and economic sector of the country. Since rice dominates the Filipino diet by default, biofortification of rice will help improve the micronutrient status. The Philippine government has proactively initiated various programs and policies to address micronutrient deficiencies, particularly through fortification of basic food commodities. Biofortification, the fortification of rice with micronutrients through breeding, is considered the most sustainable and cost-effective strategy that can benefit large vulnerable populations. However, developing promising genotypes with micronutrient-enriched grains should be coupled with improving micronutrient bioavailability in the soil in order to optimize biofortification. This review documents the prevailing soil Zn-deficiency problems in the major rice production areas in the Philippines that may influence the Zn nutritional status of the population. The article also reports on the biofortification efforts that have resulted in the development of two biofortified varieties approved for commercial release in the Philippines. As nutritional security is increasingly recognized as a priority area, greater efforts are required to develop biofortified rice varieties that suit both farmers' and consumers' preferences, and that can address these critical needs for human health in a sustainable and cost-effective manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...