Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39231805

RESUMO

AIMS: To identify the promising oleaginous Aspergillus oryzae strain and leverage its lipid and biomass production through a mathematical model. METHODS AND RESULTS: Comparative profiling of the cell growth and total fatty acid (TFA) content among 13 strains of A. oryzae was performed to explore the discrimination in their lipid productions. The oleaginicity of A. oryzae was found to be strain dependent, where the fungal strain BCC7051 exhibited superior performance in producing lipid-rich biomass by submerged fermentation. The TFA contents of the strain BCC7051 were comparable when cultivated at a range of pH values (pH 3.5-6.5) and temperatures (24-42°C). The mathematical model was generated, well describing and predicting the fungal growth and lipid phenotypic traits at various temperatures and carbon substrates. CONCLUSION: The A. oryzae strain BCC7051 was a robust cell factory, acquiring economically feasible options for producing valuable lipid-based products.


Assuntos
Aspergillus oryzae , Biomassa , Fermentação , Aspergillus oryzae/metabolismo , Aspergillus oryzae/crescimento & desenvolvimento , Lipídeos , Fenótipo , Modelos Teóricos , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Temperatura , Concentração de Íons de Hidrogênio , Meios de Cultura
2.
Gene ; 741: 144559, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32169630

RESUMO

The fungi in order Mortierellales are attractive producers for long-chain polyunsaturated fatty acids (PUFAs). Here, the genome sequencing and assembly of a novel strain of Mortierella sp. BCC40632 were done, yielding 65 contigs spanning of 49,964,116 total bases with predicted 12,149 protein-coding genes. We focused on the acetyl-CoA in relevant to its derived metabolic pathways for biosynthesis of macromolecules with biological functions, including PUFAs, eicosanoids and carotenoids. By comparative genome analysis between Mortierellales and Mucorales, the signature genetic characteristics of the arachidonic acid-producing strains, including Δ5-desaturase and GLELO-like elongase, were also identified in the strain BCC40632. Remarkably, this fungal strain contained only n-6 pathway of PUFA biosynthesis due to the absence of Δ15-desaturase or ω3-desaturase gene in contrast to other Mortierella species. Four putative enzyme sequences in the eicosanoid biosynthetic pathways were identified in the strain BCC40632 and others Mortierellale fungi, but were not detected in the Mucorales. Another unique metabolic trait of the Mortierellales was the inability in carotenoid synthesis as a result of the lack of phytoene synthase and phytoene desaturase genes. The findings provide a perspective in strain optimization for production of tailored-made products with industrial applications.


Assuntos
Acetilcoenzima A/biossíntese , Ácido Araquidônico/genética , Genoma Fúngico/genética , Mortierella/metabolismo , Acetilcoenzima A/genética , Ácido Araquidônico/biossíntese , Vias Biossintéticas/genética , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Mortierella/genética , Mucorales/genética , Mucorales/metabolismo , Ácido gama-Linolênico/genética , Ácido gama-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA