Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9168, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280270

RESUMO

In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.


Assuntos
Diatomáceas , Azul de Metileno , Dióxido de Silício , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Dióxido de Silício/química , Dióxido de Silício/isolamento & purificação , Adsorção , Azul de Metileno/metabolismo , Concentração de Íons de Hidrogênio , Porosidade , Poluentes da Água/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos
2.
Mar Drugs ; 21(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233506

RESUMO

Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si-O, N-H, and O-H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g-1, 41.97 mg g-1, and 33.19 mg g-1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.


Assuntos
Diatomáceas , Poluentes Químicos da Água , Corantes/química , Corantes de Rosanilina/química , Vermelho Congo , Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA