Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830567

RESUMO

Treatment of tremors, such as in essential tremor (ET) and Parkinson's disease (PD) is mostly ineffective. Exact tremor pathomechanisms are unknown and relevant animal models are missing. GABA-A receptor is a target for tremorolytic medications, but current non-selective drugs produce side effects and have safety liabilities. The aim of this study was a search for GABA-A subunit-specific tremorolytics using different tremor-generating mechanisms. Two selective positive allosteric modulators (PAMs) were tested. Zolpidem, targeting GABA-A α1, was not effective in models of harmaline-induced ET, pimozide- or tetrabenazine-induced tremulous jaw movements (TJMs), while the novel GABA-A α2/3 selective MP-III-024 significantly reduced both the harmaline-induced ET tremor and pimozide-induced TJMs. While zolpidem decreased the locomotor activity of the rats, MP-III-024 produced small increases. These results provide important new clues into tremor suppression mechanisms initiated by the enhancement of GABA-driven inhibition in pathways controlled by α2/3 but not α1 containing GABA-A receptors. Tremor suppression by MP-III-024 provides a compelling reason to consider selective PAMs targeting α2/3-containing GABA-A receptors as novel therapeutic drug targets for ET and PD-associated tremor. The possibility of the improved tolerability and safety of this mechanism over non-selective GABA potentiation provides an additional rationale to further pursue the selective α2/3 hypothesis.


Assuntos
Tremor Essencial , Tremor , Ratos , Animais , Tremor/induzido quimicamente , Tremor/tratamento farmacológico , Pimozida/efeitos adversos , Zolpidem/efeitos adversos , Harmalina/efeitos adversos , Receptores de GABA-A/metabolismo , Ratos Sprague-Dawley , Ligantes , Tremor Essencial/metabolismo , Ácido gama-Aminobutírico
2.
Biomolecules ; 11(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572572

RESUMO

The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.


Assuntos
Astrócitos/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Envelhecimento/metabolismo , Animais , Comunicação Celular , Humanos
3.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299176

RESUMO

The benefits of a ketogenic diet in childhood epilepsy steered up hope for neuroprotective effects of hyperketonemia in Parkinson's disease (PD). There are multiple theoretical reasons but very little actual experimental proof or clinical trials. We examined the long-term effects of the ketogenic diet in an animal model of early PD. A progressive, selective dopaminergic medium size lesion was induced by 6-OHDA injection into the medial forebrain bundle. Animals were kept on the stringent ketogenic diet (1% carbohydrates, 8% protein, 70% fat) for 3 weeks prior and 4 weeks after the brain operation. Locomotor activity, neuron count, dopaminergic terminal density, dopamine level, and turnover were analyzed at three time-points post-lesion, up to 4 weeks after the operation. Energy metabolism parameters (glycogen, mitochondrial complex I and IV, lactate, beta-hydroxybutyrate, glucose) were analyzed in the brain and liver or plasma. Protein expression of enzymes essential for gluconeogenesis (PEPCK, G6PC) and glucose utilization (GCK) was analyzed in the liver. Despite long-term hyperketonemia pre- and post-lesion, the ketogenic diet did not protect against 6-OHDA-induced dopaminergic neuron lesions. The ketogenic diet only tended to improve locomotor activity and normalize DA turnover in the striatum. Rats fed 7 weeks in total with a restrictive ketogenic diet maintained normoglycemia, and neither gluconeogenesis nor glycogenolysis in the liver was responsible for this effect. Therefore, potentially, the ketogenic diet could be therapeutically helpful to support the late compensatory mechanisms active via glial cells but does not necessarily act against the oxidative stress-induced parkinsonian neurodegeneration itself. A word of caution is required as the stringent ketogenic diet itself also carries the risk of unwanted side effects, so it is important to study the long-term effects of such treatments. More detailed metabolic long-term studies using unified diet parameters are required, and human vs. animal differences should be taken under consideration.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Encéfalo/patologia , Dieta Cetogênica/efeitos adversos , Neurônios Dopaminérgicos/patologia , Fígado/patologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar
4.
Front Cell Neurosci ; 14: 198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848611

RESUMO

Inflammatory processes and microglia activation accompany most of the pathophysiological diseases in the central nervous system. It is proven that glial pathology precedes and even drives the development of multiple neurodegenerative conditions. A growing number of studies point out the importance of microglia in brain development as well as in physiological functioning. These resident brain immune cells are divergent from the peripherally infiltrated macrophages, but their precise in situ discrimination is surprisingly difficult. Microglial heterogeneity in the brain is especially visible in their morphology and cell density in particular brain structures but also in the expression of cellular markers. This often determines their role in physiology or pathology of brain functioning. The species differences between rodent and human markers add complexity to the whole picture. Furthermore, due to activation, microglia show a broad spectrum of phenotypes ranging from the pro-inflammatory, potentially cytotoxic M1 to the anti-inflammatory, scavenging, and regenerative M2. A precise distinction of specific phenotypes is nowadays essential to study microglial functions and tissue state in such a quickly changing environment. Due to the overwhelming amount of data on multiple sets of markers that is available for such studies, the choice of appropriate markers is a scientific challenge. This review gathers, classifies, and describes known and recently discovered protein markers expressed by microglial cells in their different phenotypes. The presented microglia markers include qualitative and semi-quantitative, general and specific, surface and intracellular proteins, as well as secreted molecules. The information provided here creates a comprehensive and practical guide through the current knowledge and will facilitate the choosing of proper, more specific markers for detailed studies on microglia and neuroinflammatory mechanisms in various physiological as well as pathological conditions. Both basic research and clinical medicine need clearly described and validated molecular markers of microglia phenotype, which are essential in diagnostics, treatment, and prevention of diseases engaging glia activation.

5.
J Neurochem ; 148(1): 63-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295916

RESUMO

Glial pathology precedes symptoms of Parkinson's disease and multiple other neurodegenerative diseases. Prolonged impairment of astrocytic functions could increase the vulnerability of dopaminergic neurons in the substantia nigra (SN), accelerate their degeneration and affect ability to compensate for partial degeneration at the presymptomatic stages of the disease. The aim of this study was to investigate the astrocyte depletion in the SN, its impact on the dopaminergic system functioning and multiple markers of energy metabolism during the early stages of neurodegeneration and compensation. We induced death of 30% of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, simultaneously activating microglia response but sparing the dopaminergic neurons. The FC effect was reversible after toxin withdrawal. Dopaminergic neurons were killed by 6-hydroxydopamine causing transient locomotor disability, reversed with time showing compensatory potential. Death of astrocytes diminished the capability of the dopaminergic system to compensate for the degeneration of neurons and caused a local energy deprivation by decreasing lactate and glycogen amount. Studied markers suggest a shift in the usage of energy substrates, via increased glycogenolysis and glycolysis markers, ketone bodies availability and fatty acid transport in remaining cells. Peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1alpha) and AMP-activated protein kinase (AMPK), the energy sensors, showed different regulation between the cell-types. Increased neuronal expression of carnitine palmitoyltransferase 1c could play a role in the adaptation to metabolic stress in response to glia dysfunction. Astrocyte energetic support is one of the essential factors for neuronal compensatory mechanisms of dopaminergic system and might have a leading role in the presymptomatic Parkinson's disease stages. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Astrócitos/metabolismo , Intoxicação por MPTP/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Substância Negra/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Metabolismo Energético/fisiologia , Intoxicação por MPTP/patologia , Masculino , Degeneração Neural/patologia , Neurônios/patologia , Ratos , Ratos Wistar , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...