Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754953

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.

2.
J Med Genet ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531627

RESUMO

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.

3.
J Exp Clin Cancer Res ; 43(1): 33, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281027

RESUMO

BACKGROUND: Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking. METHODS: The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action. RESULTS: We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration. CONCLUSIONS: Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.


Assuntos
Neoplasias Pancreáticas , Rutênio , Humanos , Fosforilação Oxidativa , Rutênio/farmacologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo
4.
Front Cell Dev Biol ; 11: 1190258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576597

RESUMO

Ellis van Creveld syndrome and Weyers acrofacial dysostosis are two rare genetic diseases affecting skeletal development. They are both ciliopathies, as they are due to malfunction of primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae and are required for Hedgehog signaling, a key pathway during skeletal morphogenesis. These ciliopathies are caused by mutations affecting the EVC-EVC2 complex, a transmembrane protein heterodimer that regulates Hedgehog signaling from inside primary cilia. Despite the importance of this complex, the mechanisms underlying its stability, targeting and function are poorly understood. To address this, we characterized the endogenous EVC protein interactome in control and Evc-null cells. This proteomic screen confirmed EVC's main known interactors (EVC2, IQCE, EFCAB7), while revealing new ones, including USP7, a deubiquitinating enzyme involved in Hedgehog signaling. We therefore looked at EVC-EVC2 complex ubiquitination. Such ubiquitination exists but is independent of USP7 (and of USP48, also involved in Hh signaling). We did find, however, that monoubiquitination of EVC-EVC2 cytosolic tails greatly reduces their protein levels. On the other hand, modification of EVC-EVC2 cytosolic tails with the small ubiquitin-related modifier SUMO3 has a different effect, enhancing complex accumulation at the EvC zone, immediately distal to the ciliary transition zone, possibly via increased binding to the EFCAB7-IQCE complex. Lastly, we find that EvC zone targeting of EVC-EVC2 depends on two separate EFCAB7-binding motifs within EVC2's Weyers-deleted peptide. Only one of these motifs had been characterized previously, so we have mapped the second herein. Altogether, our data shed light on EVC-EVC2 complex regulatory mechanisms, with implications for ciliopathies.

5.
FASEB J ; 36(4): e22258, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35334131

RESUMO

Chondrocytes in osteoarthritic (OA) cartilage acquire a hypertrophic-like phenotype, where Hedgehog (Hh) signaling is pivotal. Hh overexpression causes OA-like cartilage lesions, whereas its downregulation prevents articular destruction in mouse models. Mutations in EVC and EVC2 genes disrupt Hh signaling, and are responsible for the Ellis-van Creveld syndrome skeletal dysplasia. Since Ellis-van Creveld syndrome protein (Evc) deletion is expected to hamper Hh target gene expression we hypothesized that it would also prevent OA progression avoiding chondrocyte hypertrophy. Our aim was to study Evc as a new therapeutic target in OA, and whether Evc deletion restrains chondrocyte hypertrophy and prevents joint damage in an Evc tamoxifen induced knockout (EvccKO ) model of OA. For this purpose, OA was induced by surgical knee destabilization in wild-type (WT) and EvccKO adult mice, and healthy WT mice were used as controls (n = 10 knees/group). Hypertrophic markers and Hh genes were measured by qRT-PCR, and metalloproteinases (MMP) levels assessed by western blot. Human OA chondrocytes and cartilage samples were obtained from patients undergoing knee joint replacement surgery. Cyclopamine (CPA) was used for Hh pharmacological inhibition and IL-1 beta as an inflammatory insult. Our results showed that tamoxifen induced inactivation of Evc inhibited Hh overexpression and partially prevented chondrocyte hypertrophy during OA, although it did not ameliorate cartilage damage in DMM-EvccKO mice. Hh pathway inhibition did not modify the expression of proinflammatory mediators induced by IL-1 beta in human OA chondrocytes in culture. We found that hypertrophic-IHH-and inflammatory-COX-2-markers co-localized in OA cartilage samples. We concluded that tamoxifen induced inactivation of Evc partially prevented chondrocyte hypertrophy in DMM-EvccKO mice, but it did not ameliorate cartilage damage. Overall, our results suggest that chondrocyte hypertrophy per se is not a pathogenic event in the progression of OA.


Assuntos
Cartilagem Articular , Condrócitos , Osteoartrite , Animais , Cartilagem Articular/patologia , Condrócitos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipertrofia/patologia , Interleucina-1beta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Osteoartrite/metabolismo , Tamoxifeno/farmacologia
6.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058759

RESUMO

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Assuntos
Anormalidades Múltiplas/genética , Disfunção Cognitiva/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Dedos/anormalidades , Mutação em Linhagem Germinativa , Defeitos dos Septos Cardíacos/genética , Polidactilia/genética , Dedos do Pé/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Animais , Sequência de Bases , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/deficiência , Feminino , Dedos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Defeitos dos Septos Cardíacos/diagnóstico , Defeitos dos Septos Cardíacos/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiência , Holoenzimas/genética , Humanos , Recém-Nascido , Masculino , Camundongos , Modelos Moleculares , Mosaicismo , Células NIH 3T3 , Linhagem , Polidactilia/diagnóstico , Polidactilia/patologia , Estrutura Secundária de Proteína , Dedos do Pé/patologia
7.
Hum Mutat ; 41(12): 2087-2093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906221

RESUMO

Clinical expression of Ellis-van Creveld syndrome (EvC) is variable and mild phenotypes have been described, including patients with mostly cardiac and limb involvement. Whether these cases are part of the EvC phenotypic spectrum or separate conditions is disputed. Herein, we describe a family with vertical transmission of atrioventricular canal defect (AVCD), common atrium, and postaxial polydactyly. Targeted sequencing of EVC, EVC2, WDR35, DYNC2LI1, and DYNC2H1 identified different compound heterozygosity in EVC genotypes in the two affected members, consisting of a nonsense (p.Arg622Ter) and a missense (p.Arg663Pro) variant in the father, and the same nonsense variant and a noncanonical splice-site in-frame change (c.1316-7A>G) in the daughter. Complementary DNA sequencing, immunoblot, and immunofluorescence experiments using patient-derived fibroblasts and Evc-/- mouse embryonic fibroblasts showed that p.Arg622Ter is a loss-of-function mutation, whereas p.Arg663Pro and the splice-site change c.1316-7A>G are hypomorphic variants resulting in proteins that retain, in part, the ability to complex with EVC2. Our molecular and functional data demonstrate that at least in some cases the condition characterized as "common atrium/AVCD with postaxial polydactyly" is a mild form of EvC due to hypomorphic EVC mutations, further supporting the occurrence of genotype-phenotype correlations in this syndrome.


Assuntos
Síndrome de Ellis-Van Creveld/genética , Dedos/anormalidades , Predisposição Genética para Doença , Defeitos dos Septos Cardíacos/genética , Proteínas de Membrana/genética , Mutação/genética , Polidactilia/genética , Dedos do Pé/anormalidades , Adulto , Animais , Criança , Pré-Escolar , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Família , Feminino , Dedos/diagnóstico por imagem , Defeitos dos Septos Cardíacos/diagnóstico por imagem , Humanos , Masculino , Camundongos , Linhagem , Polidactilia/diagnóstico por imagem , Dedos do Pé/diagnóstico por imagem
8.
Hum Mutat ; 41(1): 265-276, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549748

RESUMO

Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B.


Assuntos
Dedos/anormalidades , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Polidactilia/diagnóstico , Polidactilia/genética , Dedos do Pé/anormalidades , Proteína GLI1 em Dedos de Zinco/genética , Alelos , Substituição de Aminoácidos , Feminino , Fibroblastos , Expressão Gênica , Genes Dominantes , Genes Reporter , Estudos de Associação Genética/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
9.
Hum Mol Genet ; 26(23): 4556-4571, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973407

RESUMO

GLI1, GLI2 and GLI3 form a family of transcription factors which regulate development by mediating the action of Hedgehog (Hh) morphogens. Accordingly, inactivating variants in GLI2 and GLI3 are found in several developmental disorders. In contrast, loss-of-function mutations in GLI1 have remained elusive, maintaining enigmatic the role of this gene in the human embryo. We describe eight patients from three independent families having biallelic truncating variants in GLI1 and developmental defects overlapping with Ellis-van Creveld syndrome (EvC), a disease caused by diminished Hh signaling. Two families had mutations in the last exon of the gene and a third family was identified with an N-terminal stop gain variant predicted to be degraded by the NMD-pathway. Analysis of fibroblasts from one of the patients with homozygous C-terminal truncation of GLI1 demonstrated that the corresponding mutant GLI1 protein is fabricated by patient cells and becomes upregulated in response to Hh signaling. However, the transcriptional activity of the truncated GLI1 factor was found to be severely impaired by cell culture and in vivo assays, indicating that the balance between GLI repressors and activators is altered in affected subjects. Consistent with this, reduced expression of the GLI target PTCH1 was observed in patient fibroblasts after chemical induction of the Hh pathway. We conclude that GLI1 inactivation is associated with a phenotypic spectrum extending from isolated postaxial polydactyly to an EvC-like condition.


Assuntos
Síndrome de Ellis-Van Creveld/genética , Proteína GLI1 em Dedos de Zinco/genética , Criança , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Éxons , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas Hedgehog/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Polidactilia/genética , Polidactilia/metabolismo , Cultura Primária de Células , Transdução de Sinais , Transativadores/genética , Transcrição Gênica , Proteína GLI1 em Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...