Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6670): 547-553, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917685

RESUMO

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kß x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.

2.
J Am Chem Soc ; 145(31): 17151-17163, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493594

RESUMO

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.

3.
Nature ; 613(7943): 287-291, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631647

RESUMO

Ammonia is a critical chemical in agriculture and industry that is produced on a massive scale via the Haber-Bosch process1. The environmental impact of this process, which uses methane as a fuel and feedstock for hydrogen, has motivated the need for more sustainable ammonia production2-5. However, many strategies that use renewable hydrogen are not compatible with existing methods for ammonia separation6-9. Given their high surface areas and structural and chemical versatility, metal-organic frameworks (MOFs) hold promise for ammonia separations, but most MOFs bind ammonia irreversibly or degrade on exposure to this corrosive gas10,11. Here we report a tunable three-dimensional framework that reversibly binds ammonia by cooperative insertion into its metal-carboxylate bonds to form a dense, one-dimensional coordination polymer. This unusual adsorption mechanism provides considerable intrinsic thermal management12, and, at high pressures and temperatures, cooperative ammonia uptake gives rise to large working capacities. The threshold pressure for ammonia adsorption can further be tuned by almost five orders of magnitude through simple synthetic modifications, pointing to a broader strategy for the development of energy-efficient ammonia adsorbents.

4.
Chem Commun (Camb) ; 57(40): 4954-4957, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33876158

RESUMO

We report the synthesis of four homoleptic thorium(iv) amidate complexes as single-source molecular precursors for thorium dioxide. Each can be sublimed at atmospheric pressure, with the substituents on the amidate ligands significantly impacting their volatility and thermal stability. These complexes decompose via alkene elimination to give ThO2 without need for a secondary oxygen source. ThO2 samples formed from pyrolysis of C-alkyl amidates were found to have higher purity and crystallinity than ThO2 samples formed from C-aryl amidates.

5.
J Am Chem Soc ; 141(45): 18325-18333, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31626542

RESUMO

Most C4 hydrocarbons are obtained as byproducts of ethylene production or oil refining, and complex and energy-intensive separation schemes are required for their isolation. Substantial industrial and academic effort has been expended to develop more cost-effective adsorbent- or membrane-based approaches to purify commodity chemicals such as 1,3-butadiene, isobutene, and 1-butene, but the very similar physical properties of these C4 hydrocarbons make this a challenging task. Here, we examine the adsorption behavior of 1-butene, cis-2-butene, and trans-2-butene in the metal-organic frameworks M2(dobdc) (M = Mn, Fe, Co, Ni; dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) and M2(m-dobdc) (m-dobdc4- = 4,6-dioxidobenzene-1,3-dicarboxylate), which all contain a high density of coordinatively unsaturated M2+ sites. We find that both Co2(m-dobdc) and Ni2(m-dobdc) are able to separate 1-butene from the 2-butene isomers, a critical industrial process that relies largely on energetically demanding cryogenic distillation. The origin of 1-butene selectivity is traced to the high charge density retained by the M2+ metal centers exposed within the M2(m-dobdc) structures, which results in a reversal of the cis-2-butene selectivity typically observed at framework open metal sites. Selectivity for 1-butene adsorption under multicomponent conditions is demonstrated for Ni2(m-dobdc) in both the gaseous and the liquid phases via breakthrough and batch adsorption experiments.


Assuntos
Alcenos/isolamento & purificação , Estruturas Metalorgânicas/química , Adsorção , Alcenos/química , Termodinâmica
6.
Angew Chem Int Ed Engl ; 57(21): 6125-6129, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29603561

RESUMO

Two-dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom-up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C60 as a polymerizable monomer. The C60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C60 . The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid.

7.
Nat Chem ; 9(12): 1170-1174, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168490

RESUMO

The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co6Te8(PnPr3)6][C60]3, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co6Te8(PnPr3)6][C60]3 and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.

8.
Nano Lett ; 16(2): 1445-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26829055

RESUMO

Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and transition metal dichalcogenides have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based two-dimensional (2D) layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Here we describe a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. The absorption spectrum of the bulk solid shows an optical gap of 390 ± 40 meV that is consistent with thermal activation energy obtained from electrical transport measurement. We find that the dimensional confinement of fullerenes significantly modulates the optical and electronic properties compared to the bulk solid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...