Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38768007

RESUMO

Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series. We hypothesized that decomposing EEG signals into oscillatory modes would yield more accurate age predictions than using raw or canonically frequency-filtered EEG. Specifically, we employed multivariate intrinsic mode functions (MIMFs), an empirical mode decomposition (EMD) variant based on multivariate iterative filtering (MIF), with a convolutional neural network (CNN) model. Testing a large dataset of routine clinical EEG scans (n = 6540) from patients aged 1 to 103 years, we found that an ad-hoc CNN model without fine-tuning could reasonably predict brain age from EEGs. Crucially, MIMF decomposition significantly improved performance compared to canonical brain rhythms (from delta to lower gamma oscillations). Our approach achieved a mean absolute error (MAE) of 13.76 ± 0.33 and a correlation coefficient of 0.64 ± 0.01 in brain age prediction over the entire lifespan. Our findings indicate that CNN models applied to EEGs, preserving their original temporal structure, remains a promising framework for EEG classification, wherein the adaptive signal decompositions such as the MIF can enhance CNN models' performance in this task.


Assuntos
Encéfalo , Eletroencefalografia , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Adulto Jovem , Adulto , Criança , Idoso , Adolescente , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Feminino , Encéfalo/fisiologia , Algoritmos , Aprendizado Profundo , Análise Multivariada , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
2.
IEEE J Biomed Health Inform ; 26(4): 1432-1440, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34029201

RESUMO

Machine learning (ML) algorithms play a vital role in the brain age estimation frameworks. The impact of regression algorithms on prediction accuracy in the brain age estimation frameworks have not been comprehensively evaluated. Here, we sought to assess the efficiency of different regression algorithms on brain age estimation. To this end, we built a brain age estimation framework based on a large set of cognitively healthy (CH) individuals ( N = 788) as a training set followed by different regression algorithms (22 different algorithms in total). We then quantified each regression-algorithm on independent test sets composed of 88 CH individuals, 70 mild cognitive impairment patients as well as 30 Alzheimer's disease patients. The prediction accuracy in the independent test set (i.e., CH set) varied in regression algorithms mean absolute error (MAE) from 4.63 to 7.14 yrs, R2 from 0.76 to 0.88. The highest and lowest prediction accuracies were achieved by Quadratic Support Vector Regression algorithm (MAE = 4.63 yrs, R2 = 0.88, 95% CI = [-1.26, 1.42]) and Binary Decision Tree algorithm (MAE = 7.14 yrs, R2 = 0.76, 95% CI = [-1.50, 2.62]), respectively. Our experimental results demonstrate that the prediction accuracy in brain age frameworks is affected by regression algorithms, indicating that advanced machine learning algorithms can lead to more accurate brain age predictions in clinical settings.


Assuntos
Disfunção Cognitiva , Aprendizado de Máquina , Algoritmos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...