Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(1): 485-496, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931831

RESUMO

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/síntese química , Animais , Degranulação Celular/efeitos dos fármacos , Cistina/química , Desenho de Fármacos , Temperatura Alta , Mastócitos/efeitos dos fármacos , Modelos Moleculares , Medição da Dor/efeitos dos fármacos , Ratos , Venenos de Aranha/farmacologia
2.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011626

RESUMO

Humans with loss-of-function mutations in the Nav1.7 channel gene (SCN9A) show profound insensitivity to pain, whereas those with gain-of-function mutations can have inherited pain syndromes. Therefore, inhibition of the Nav1.7 channel with a small molecule has been considered a promising approach for the treatment of various human pain conditions. To date, clinical studies conducted using selective Nav1.7 inhibitors have not provided analgesic efficacy sufficient to warrant further investment. Clinical studies to date used multiples of in vitro IC50 values derived from electrophysiological studies to calculate anticipated human doses. To increase the chance of clinical success, we developed rhesus macaque models of action potential propagation, nociception, and olfaction, to measure Nav1.7 target modulation in vivo. The potent and selective Nav1.7 inhibitors SSCI-1 and SSCI-2 dose-dependently blocked C-fiber nociceptor conduction in microneurography studies and inhibited withdrawal responses to noxious heat in rhesus monkeys. Pharmacological Nav1.7 inhibition also reduced odor-induced activation of the olfactory bulb (OB), measured by functional magnetic resonance imaging (fMRI) studies consistent with the anosmia reported in Nav1.7 loss-of-function patients. These data demonstrate that it is possible to measure Nav1.7 target modulation in rhesus macaques and determine the plasma concentration required to produce a predetermined level of inhibition. The calculated plasma concentration for preclinical efficacy could be used to guide human efficacious exposure estimates. Given the translatable nature of the assays used, it is anticipated that they can be also used in phase 1 clinical studies to measure target modulation and aid in the interpretation of phase 1 clinical data.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Animais , Humanos , Macaca mulatta , Nociceptividade , Nociceptores
3.
Front Pharmacol ; 12: 786078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002718

RESUMO

MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the treatment of postoperative pain. A translational strategy was developed for MK-2075 to quantitatively interrelate drug exposure, target modulation, and the desired pharmacological response in preclinical animal models for the purpose of human translation. Analgesics used as a standard of care in postoperative pain were evaluated in preclinical animal models of nociceptive behavior (mouse tail flick latency and rhesus thermode heat withdrawal) to determine the magnitude of pharmacodynamic (PD) response at plasma concentrations associated with efficacy in the clinic. MK-2075 was evaluated in those same animal models to determine the concentration of MK-2075 required to achieve the desired level of response. Translation of MK-2075 efficacious concentrations in preclinical animal models to a clinical PKPD target in humans was achieved by accounting for species differences in plasma protein binding and in vitro potency against the NaV1.7 channel. Estimates of human pharmacokinetic (PK) parameters were obtained from allometric scaling of a PK model from preclinical species and used to predict the dose required to achieve the clinical exposure. MK-2075 exposure-response in a preclinical target modulation assay (rhesus olfaction) was characterized using a computational PKPD model which included a biophase compartment to account for the observed hysteresis. Translation of this model to humans was accomplished by correcting for species differences in PK NaV1.7 potency, and plasma protein binding while assuming that the kinetics of distribution to the target site is the same between humans and rhesus monkeys. This enabled prediction of the level of target modulation anticipated to be achieved over the dosing interval at the projected clinical efficacious human dose. Integration of these efforts into the early development plan informed clinical study design and decision criteria.

4.
J Pain Res ; 11: 735-741, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692626

RESUMO

INTRODUCTION: The development of novel analgesics to treat acute or chronic pain has been a challenge due to a lack of translatable measurements. Preclinical end points with improved translatability are necessary to more accurately inform clinical testing paradigms, which may help guide selection of viable drug candidates. METHODS: In this study, a nonhuman primate biomarker which is sensitive to standard analgesics at clinically relevant plasma concentrations, can differentiate analgesia from sedation and utilizes a protocol very similar to that which can be employed in human clinical studies is described. Specifically, acute heat stimuli were delivered to the volar forearm using a contact heat thermode in the same manner as the clinical setting. RESULTS: Clinically efficacious exposures of morphine, fentanyl, and tramadol produced robust analgesic effects, whereas doses of diazepam that produce sedation had no effect. CONCLUSION: We propose that this assay has predictive utility that can help improve the probability of success for developing novel analgesics.

5.
Neurosci Lett ; 655: 82-89, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28689926

RESUMO

The facet joint is a common source of neck pain, particularly after excessive stretch of its capsular ligament. Peptidergic afferents have been shown to have an important role in the development and maintenance of mechanical hyperalgesia, dysregulated nociceptive signaling, and spinal hyperexcitability that develop after mechanical injury to the facet joint. However, the role of non-peptidergic isolectin-B4 (IB4) cells in mediating joint pain is unknown. Isolectin-B4 saporin (IB4-SAP) was injected into the facet joint to ablate non-peptidergic cells, and the facet joint later underwent a ligament stretch known to induce pain. Behavioral sensitivity, thalamic glutamate transporter expression, and thalamic hyperexcitability were evaluated up to and at day 7. Administering IB4-SAP prior to a painful injury prevented the development of mechanical hyperalgesia that is typically present. Intra-articular IB4-SAP also prevented the upregulation of the glutamate transporters GLT-1 and EAAC1 in the ventral posterolateral nucleus of the thalamus and reduced thalamic neuronal hyperexcitability at day 7. These findings suggest that a painful facet injury induces changes extending to supraspinal structures and that IB4-positive afferents in the facet joint may be critical for the development and maintenance of sensitization in the thalamus after a painful facet joint injury.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Lectinas/metabolismo , Neurônios Aferentes/fisiologia , Dor/fisiopatologia , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Tálamo/fisiopatologia , Articulação Zigapofisária/lesões , Animais , Transportador 3 de Aminoácido Excitatório/metabolismo , Hiperalgesia/fisiopatologia , Lectinas/farmacologia , Masculino , Estimulação Física , Ratos , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Tálamo/metabolismo , Núcleos Ventrais do Tálamo/metabolismo , Articulação Zigapofisária/inervação
6.
Neurosci Lett ; 604: 193-8, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26240991

RESUMO

Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis.


Assuntos
Hiperalgesia/fisiopatologia , Fator de Crescimento Neural/metabolismo , Neuropeptídeos/metabolismo , Articulação Zigapofisária/efeitos dos fármacos , Articulação Zigapofisária/lesões , Potenciais de Ação , Animais , Comportamento Animal , Hiperalgesia/induzido quimicamente , Hiperalgesia/psicologia , Lectinas/metabolismo , Lectinas/farmacologia , Masculino , Fator de Crescimento Neural/efeitos adversos , Fator de Crescimento Neural/farmacologia , Neurônios Aferentes/metabolismo , Limiar da Dor , Estimulação Física , Ratos Sprague-Dawley , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Transdução de Sinais , Corno Dorsal da Medula Espinal/fisiopatologia , Substância P/metabolismo , Articulação Zigapofisária/fisiopatologia
7.
J Pain ; 16(8): 741-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002605

RESUMO

UNLABELLED: Allergic contact dermatitis (ACD) is a common condition that can significantly affect the quality of life. Contact with allergens results in delayed hypersensitivity reactions involving T lymphocytes, with associated skin inflammation and spontaneous itch and nociceptive sensations. However, psychophysical studies of these sensations are lacking. In the present study, we sensitized 8 healthy volunteers to squaric acid dibutyl ester (SADBE). Two weeks later, 1 volar forearm was challenged with SADBE, and the other with acetone vehicle control. Subsequently, participants rated the maximal perceived intensity of spontaneous itch, pricking/stinging, and burning every 6 to 12 hours for 1 week, using the generalized Labeled Magnitude Scale. In the laboratory, they judged stimulus-evoked sensations within and outside the chemically treated area. The SADBE- but not the acetone-treated skin resulted in 1) localized inflammation, with spontaneous itch and nociceptive sensations peaking at 24 to 48 hours after challenge, 2) alloknesis, hyperknesis, and hyperalgesia to mechanical stimuli that were reduced or eliminated by anesthetic cooling of the SADBE-treated area and restored on rewarming, suggesting that sensations and dysesthesias are dependent on ongoing peripheral neural activity, and 3) enhanced itch to intradermal injection of histamine, BAM8-22, or ß-alanine. This experimental model of T-cell-mediated inflammation may prove useful in evaluating potential treatments of itch from ACD. PERSPECTIVE: In a model of allergic contact dermatitis, experimentally applied in humans, psychophysical measurements were obtained of persistent, spontaneous itch and enhanced stimulus-evoked itch and pain sensations. These sensory measurements will be useful in the identification of the neural mechanisms underlying inflammatory itch and pain.


Assuntos
Dermatite Alérgica de Contato/complicações , Dermatite Alérgica de Contato/psicologia , Nociceptividade/fisiologia , Prurido/etiologia , Psicofísica/métodos , Adjuvantes Imunológicos/efeitos adversos , Ciclobutanos/efeitos adversos , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/etiologia , Feminino , Histamina/efeitos adversos , Agonistas dos Receptores Histamínicos/efeitos adversos , Humanos , Hiperalgesia/fisiopatologia , Masculino , Modelos Teóricos , Nociceptividade/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Estimulação Física/efeitos adversos , Prurido/tratamento farmacológico , Pele/patologia , Esteroides/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...