Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475432

RESUMO

Leucoptera coffeella (Lepidoptera: Lyonetiidae) is one of the main pests in coffee crops. The economic injury level (EIL) is the lowest density of the pest at which economic damages match the costs of control measures. The economic threshold (ET) is the density of the pest at which control measures must be taken so that this population does not reach the EIL. These are the main indices used for pest control decision-making. Control of L. coffeella is carried out by manual, tractor, airplane or drone applications. This work aimed to determine EILs and ETs for L. coffeella as a function of insecticide application technology in conventional and organic Coffea arabica crops. Data were collected over five years in commercial C. arabica crops on seven 100 ha central pivots. The cost of control in organic crops was 16.98% higher than conventional. The decreasing order of control cost was manual > drone > airplane > tractor application. Coffee plants were tolerant to low densities (up to 15% mined leaves) of the pest that caused losses of up to 6.56%. At high pest densities (54.20% mined leaves), losses were high (85.62%). In organic and conventional crops and with the use of different insecticide application technologies, EIL and ET were similar. The EIL and ET were 14% and 11% of mined leaves, respectively. Therefore, these indices can be incorporated in integrated pest management programs in C. arabica crops. The indices determined as a function of insecticide application technology in organic and conventional coffee are important as they serve producers with different technological levels. Additionally, EILs and ETs can contribute to more sustainable production, as control methods will only be employed when the pest density reaches these indices.

2.
Oecologia ; 201(4): 929-939, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36947271

RESUMO

Two mutually unexclusive hypotheses prevail in the theory of nutritional ecology: the balanced diet hypothesis states that consumers feed on different food items because they have complementary nutrient and energy compositions. The toxin-dilution hypothesis poses that consumers feed on different food items to dilute the toxins present in each. Both predict that consumers should not feed on low-quality food when ample high-quality food forming a complete diet is present. We investigated the diet choice of Phytoseiulus persimilis, a predatory mite of web-producing spider mites. It can develop and reproduce on single prey species, for example the spider mite Tetranychus urticae. A closely related prey, T. evansi, is of notorious bad quality for P. persimilis and other predator species. We show that juvenile predators feeding on this prey have low survival and do not develop into adults. Adults stop reproducing and have increased mortality when feeding on it. Feeding on a mixed diet of the two prey decreases predator performance, but short-term effects of feeding on the low-quality prey can be partially reversed by subsequently feeding on the high-quality prey. Yet, predators consume low-quality prey in the presence of high-quality prey, which is in disagreement with both hypotheses. We suggest that it is perhaps not the instantaneous reproduction on single prey or mixtures of prey that matters for the fitness of predators, but that it is the overall reproduction by a female and her offspring on an ephemeral prey patch, which may be increased by including inferior prey in their diet.


Assuntos
Dieta , Reprodução , Tetranychidae , Animais , Feminino , Ecologia , Cadeia Alimentar , Comportamento Predatório
3.
Exp Appl Acarol ; 88(3-4): 289-300, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370241

RESUMO

Lychee fruit production (Litchi chinensis) has been threatened in many regions of the world where the presence has been reported of the litchii erinose mite, Aceria litchii (Keifer). This study aims to identify the arthropod community associated with A. litchii on lychee plants in Minas Gerais, Brazil, and to seek for potential natural enemies associated with this mite pest in this region. We sampled lychee leaves infested with A. litchii in commercial and non-commercial lychee orchards during seven consecutive months, covering the dry and wet seasons of the year. Arthropods found in association with A. litchii on lychee leaves were collected and identified. The results indicate that a great diversity and abundance of mites and hexapods are associated with A. litchii. A total of 985 and 1872 specimens of mites were identified in commercial and non-commercial areas, respectively, belonging to the families Cheyletidae, Cunaxidae, Eupodidae, Iolinidae, Stigmaeidae, Phytoseiidae, Tarsonemidae, Tenuipalpidae, Tetranychidae, Tryophtydeidae, Tuckerellidae, Tydeidae, Winterschmidtiidae and Xenocaligonellidae and the suborder Oribatida. Among them, Phytoseiidae was the most abundant and diverse family with a total of 11 species identified, in which Phytoseius intermedius was the most abundant predatory mite species collected. Minor specimens of hexapods were also been, belonging to the orders Collembola, Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, Psocoptera and Thysanoptera. The presence of a high community of predatory mites in association with A. litchii deserves attention and our results indicate that studies to test the potential of these species and the adoption of management practices that enhance this ecological service must be carried out to achieve satisfactory control of the lychee erinose mite in lychee plants.


Assuntos
Artrópodes , Litchi , Ácaros , Animais , Árvores , Frutas
4.
Exp Appl Acarol ; 86(3): 327-342, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35286552

RESUMO

The intrinsic rate of natural increase of a population (rm) has been in focus as a key parameter in entomology and acarology. It is considered especially important in studies of predators that are potential biological control agents of fast-growing pests such as mites, whiteflies and thrips. Life-table experiments under controlled laboratory conditions are standard procedures to estimate rm. However, such experiments are often time consuming and may critically depend on the precise assessment of the developmental time and the fecundity rate early in the reproductive phase. Using selected studies of predatory mites with suitable life-table data, we investigated whether and how measurements of growth rates can be simplified. We propose a new method for estimating rm from partial life tables, in which the researcher can choose a level of precision based on a stand-in measure of relative error. Based on this choice, the procedure helps the researcher to decide when a life-table experiment can be terminated. Depending on the chosen precision, significant amounts of experimental time can be saved without seriously compromising the reliability of the estimated growth parameter.


Assuntos
Artrópodes , Ácaros , Animais , Tábuas de Vida , Controle Biológico de Vetores/métodos , Comportamento Predatório , Reprodutibilidade dos Testes
5.
Chemosphere ; 283: 131117, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34134044

RESUMO

The degradation of dyes can generate harmful by-products, thereby requiring the need to evaluate the toxicity to aquatic organisms. This study aims to evaluate the chronic ecotoxicity of methylene blue dye degraded by the Fenton process using the non-target planarian Girardia tigrina as a sensitive bioindicator of environmental contamination. The bioassays evaluated the lethality of several concentrations of the untreated and degraded dye methylene blue (MB), as well as, their sub-lethal effects on locomotion, feeding, regeneration, and reproduction. In both acute and chronic tests, the degraded dye had a stronger toxic effect when compared to the untreated dye. This negative effect after treatment was mainly associated with the presence of residual hydrogen peroxide and iron (and consequently the hydroxyl radical formed). We conclude that the utilization of the Fenton process using less oxidizing agents should be considered as important alternatives for the protection of aquatic ecosystems, without compromising the efficient removal of MB.


Assuntos
Planárias , Poluentes Químicos da Água , Animais , Corantes , Ecossistema , Peróxido de Hidrogênio/toxicidade , Azul de Metileno/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Exp Appl Acarol ; 81(2): 189-200, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419095

RESUMO

Predatory mites of the Phytoseiidae family are important biological control agents. Many species of this family are omnivores, i.e., besides on prey, they can feed on plant resources such as nectar and pollen. It has been shown that the addition of alternative food for predators to a crop enhances biological control. However, factors such as food availability and quality can also affect interactions such as cannibalism, and thus influence biological control. We investigated the role of quality of the alternative food in the tendency of Amblyseius herbicolus to engage in cannibalism, a common ecological interaction in many phytoseiid mite species. Cannibalism on eggs by A. herbicolus was significantly reduced in the presence of high-quality food (cattail pollen) compared to egg cannibalism without alternative food, whereas this was not the case in the presence of low-quality food (cotton pollen). This suggests that cattail pollen is a high-quality alternative food, not only because it results in increased development and reproduction of predators, but also because it can minimize cannibalism.


Assuntos
Canibalismo , Ácaros , Comportamento Predatório , Animais , Controle Biológico de Vetores , Pólen
7.
Exp Appl Acarol ; 80(3): 409-422, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030606

RESUMO

Because predators may interfere with each other, an important step towards the implementation of successful release of multiple predators in biocontrol programs requires resolving how predators respond to the presence of heterospecific competitors. Several species of predatory mites are important biocontrol agents and the species Phytoseiulus macropilis and Neoseiulus californicus are used to control the two-spotted spider mite, Tetranychus urticae, an important pest in agriculture worldwide. We investigated their compatibility showing that the two predators do not avoid plants on which the other species is present together with their common prey, and demonstrated that their oviposition rates are not affected by the presence of the other species. However, the distribution of the eggs on leaf discs was affected by the presence of the heterospecific predator. This behaviour might weaken possible interference between these two biocontrol agents, which, in turn, may enable their persistence on plants and favour pest suppression. The increased joint use of several natural enemies for biological control highlights the importance of studies on predator-predator interactions.


Assuntos
Agentes de Controle Biológico , Ácaros/fisiologia , Controle Biológico de Vetores , Comportamento Predatório , Tetranychidae/patogenicidade , Animais , Feminino , Oviposição , Folhas de Planta
8.
Pest Manag Sci ; 76(3): 996-1003, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31489755

RESUMO

BACKGROUND: The application of lime sulfur is a common practice used to control arthropod pests in organic production of fruits. However, the unintended effects of this insecticide preparation on non-targeted organisms have not received the adequate attention. Here, we evaluated the lime sulfur toxicity on the phytophagous mites Tetranychus urticae Koch (Acari: Tetranychidae) and on two predatory mite species [i.e., Neoseiulus californicus (McGregor) and Phytoseiulus macropilis (Banks)] (Acari: Phytoseiidae) of natural occurrence in strawberry plants. We also assessed the repellency and potential effects on the oviposition rates and the egg viability of mites that were exposed to field-used lime sulfur concentrations (i.e., 2%). RESULTS: The lime sulfur exhibited higher toxicity to the predators N. californicus (LC50 = 5.4 [4.5%-6.8%]) and P. macropilis (LC50 = 5.0 [4.0%-6.5%]) than to the phytophagous T. urticae (LC50 = 12.4 [9.0%-17.1%]). However, the exposure to field-applied concentrations resulted in higher reductions on the oviposition rate of T. urticae (36%) than on the predatory mites (N. californicus = 18%. P. macropilis = 19%). Interestingly, although the egg viability of P. macropilis was less affected (i.e., reduction of 50%) by such lime sulfur exposures, these mites were unable to avoid lime sulfur-treated areas. Egg viability of N. californicus was only 18.6%. CONCLUSION: Lime sulfur at field-applied concentrations harmed T. urticae fecundity and fertility and it showed selectivity against naturally occurring predatory mites, which reinforces its potential as a tool for integrated mite pest management. © 2019 Society of Chemical Industry.


Assuntos
Fragaria , Tetranychidae , Animais , Compostos de Cálcio , Feminino , Controle Biológico de Vetores , Comportamento Predatório , Sulfetos
9.
Sci Rep ; 9(1): 1727, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741999

RESUMO

Plant defensive substances can affect the quality of herbivores as prey for predators either directly or indirectly. Directly when the prey has become toxic since it ingested toxic plant material and indirectly when these defences have affected the size and/or nutritional value (both quality parameters) of prey or their abundance. To disentangle direct and indirect effects of JA-defences on prey quality for predators, we used larvae of the omnivorous thrips Frankliniella occidentalis because these are not directly affected by the jasmonate-(JA)-regulated defences of tomato. We offered these thrips larvae the eggs of spider mites (Tetranychus urticae or T. evansi) that had been feeding from either normal tomato plants, JA-impaired plants, or plants treated with JA to artificially boost defences and assessed their performance. Thrips development and survival was reduced on the diet of T. evansi eggs relative to the diet of T. urticae eggs yet these effects were independent from the absence/presence of JA-defences. This indicates that the detrimental effects of tomato JA-defences on herbivores not necessarily also affects their quality as prey.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Comportamento Predatório , Tisanópteros , Animais , Herbivoria , Solanum lycopersicum , Ácaros , Folhas de Planta , Característica Quantitativa Herdável
10.
Pest Manag Sci ; 75(7): 1986-1992, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30610750

RESUMO

BACKGROUND: A wide range of supplementary food resources can be offered to generalist predatory mites to improve their survival and reproduction and enhance their persistence in the environment. We investigated the relative suitability of different pollen types for the survival and reproduction of Neoseiulus californicus and its life history on a mixed diet of pollen and prey. We also evaluated the population dynamics of Tetranychus urticae in the presence of N. californicus with or without pollen, and in comparison to Phytoseiulus macropilis. RESULTS: Survival and reproduction of N. californicus adults were satisfactory on exclusive diets of T. urticae, cattail pollen, palm pollen and bee pollen. However, mites did not reproduce when fed only pollen during both immature and adult stages. Both predatory mites successfully controlled T. urticae. Although the specialist P. macropilis was more efficient in suppressing the pest population in the short term, it abandoned plants at low prey densities, whereas N. californicus performed better and persisted longer under prey scarcity. CONCLUSION: N. californicus is an efficient biological control agent of T. urticae and the provision of supplementary food could retain them in the crop prior to the arrival of the pest or in periods of prey scarcity. © 2019 Society of Chemical Industry.


Assuntos
Ácaros/fisiologia , Controle Biológico de Vetores/métodos , Comportamento Predatório , Tetranychidae , Animais , Arecaceae , Dieta/veterinária , Fragaria , Ácaros/crescimento & desenvolvimento , Pólen , Reprodução/fisiologia , Typhaceae
11.
Insect Sci ; 26(1): 108-118, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28636085

RESUMO

It is well known that herbivore-induced plant defenses alter host plant quality and can affect the behavior and performance of later arriving herbivores. Effects of sequential attacks by herbivores that either suppress or induce plant defenses are less well studied. We sequentially infested leaves of tomato plants with a strain of the phytophagous spider mite Tetranychus urticae that induces plant defenses and the closely related Tetranychus evansi, which suppresses plant defenses. Plant quality was quantified through oviposition of both spider mite species and by measuring proteinase inhibitor activity using plant material that had been sequentially attacked by both herbivore species. Spider-mite oviposition data show that T. evansi could suppress an earlier induction of plant defenses by T. urticae, and T. urticae could induce defenses in plants previously attacked by T. evansi in 1 day. Longer attacks by the second species did not result in further changes in oviposition. Proteinase inhibitor activity levels showed that T. evansi suppressed the high activity levels induced by T. urticae to constitutive levels in 1 day, and further suppressed activity to levels similar to those in plants attacked by T. evansi alone. Attacks by T. urticae induced proteinase inhibitor activity in plants previously attacked by T. evansi, eventually to similar levels as induced by T. urticae alone. Hence, plant quality and plant defenses were significantly affected by sequential attacks and the order of attack does not affect subsequent performance, but does affect proteinase inhibitor activity levels. Based on our results, we discuss the evolution of suppression of plant defenses.


Assuntos
Herbivoria , Inibidores de Proteases/metabolismo , Solanum lycopersicum/metabolismo , Tetranychidae/fisiologia , Animais , Feminino , Oviposição
12.
Oecologia ; 188(3): 743-751, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30173383

RESUMO

The size or stage of interacting individuals is known to affect the outcome of ecological interactions and can have important consequences for population dynamics. This is also true for intraguild predation (the killing and eating of potential competitors), where the size or ontogenetic stage of an individual determines whether it is the intraguild predator or the intraguild prey. Studying size- or stage-specific interactions is therefore important, but can be challenging in species with complex life histories. Here, we investigated predatory interactions of all feeding stages of the two predatory mite species Neoseiulus californicus and Phytoseiulus macropilis, both of which have complex life cycles, typical for predatory arthropods. Populations of these two species compete for two-spotted spider mites, their prey. We evaluated both the capacity to kill stages of the other predator species and the capacity to benefit from feeding on these stages, both prerequisites for the occurrence of intraguild predation. Ontogeny played a critical role in the occurrence of intraguild predation. Whereas the juveniles of P. macropilis developed from larva until adulthood when feeding on N. californicus eggs, interestingly, adult female P. macropilis did not feed on the smaller stages of the other species. We furthermore show that intraguild predation was reciprocal: both juveniles and adult females of N. californicus preyed on the smallest stages of P. macropilis. These results suggest that a proper analysis of the interactions between pairs of species involved in intraguild predation should start with an inventory of the interactions among all ontogenetic stages of these species.


Assuntos
Artrópodes , Ácaros , Tetranychidae , Animais , Feminino , Dinâmica Populacional , Comportamento Predatório
13.
Ecol Evol ; 8(14): 6952-6964, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30073058

RESUMO

Intraguild predation is a mix of competition and predation and occurs when one species feeds on another species that uses similar resources. Theory predicts that intraguild predation hampers coexistence of species involved, but it is common in nature. It has been suggested that increasing habitat complexity and the presence of alternative food may promote coexistence. Reciprocal intraguild predation limits possibilities for coexistence even further. Habitat complexity and the presence of alternative food are believed to promote coexistence. We investigated this using two species of predatory mites, Iphiseiodes zuluagai and Euseius concordis, by assessing co-occurrence in the field and on arenas differing in spatial structure in the laboratory. The predators co-occured on the same plants in the field. In the laboratory, adults of the two mites fed on juveniles of the other species, both in the presence and the absence of a shared food source, showing that the two species are involved in reciprocal intraguild predation. Adults of I. zuluagai also attacked adults of E. concordis. This suggests limited possibilities for coexistence of the two species. Indeed, E. concordis invariably went extinct extremely rapidly on arenas without spatial structure with populations consisting of all stages of the two predators and with a shared resource. Coexistence was prolonged on host plant leaves with extra food sources, but E. concordis still went extinct. On small, intact plants, coexistence of the two species was much longer, and ended with the other species, I. zuluagai, often going extinct. These results suggest that spatial structure and the presence of alternative food increase the coexistence period of intraguild predators.

14.
Exp Appl Acarol ; 74(1): 1-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29383531

RESUMO

Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) is often found in coffee crops and is known to feed on coffee leaf rust, Hemileia vastatrix Berkeley and Broome (Uredinales). As the occurrence of coffee leaf rust is limited primarily to the rainy season, the mite may use other food sources to survive during the periods of low pathogen prevalence. It is well known that phytoseiid mites can survive on a variety of food sources, such as herbivorous mites, fungi and pollen. We evaluated the ability of R. loxocheles to survive and reproduce on a diet of Brevipalpus phoenicis Geijskes (Acari: Tenuipalpidae), cattail pollen (Typha spp.), clover rust (Puccinia oxalidis), bee pollen (Santa Bárbara® dehydrated pollen, Santa Bárbara, MG, Brazil) and coffee leaf rust. Ricoseius loxocheles did not survive or reproduce on any B. phoenicis stages tested (egg, larva, adult). The survival and oviposition of R. loxocheles were directly affected by the presence of coffee rust urediniospores, but not by the presence of the prey. Survival and oviposition of the phytoseiid were similar when fed cattail pollen, clover rust and coffee leaf rust but was lower when fed bee pollen. Our results show that R. loxocheles is not a predator of B. phoenicis but it is able to utilize other resources besides coffee leaf rust.


Assuntos
Cadeia Alimentar , Ácaros/fisiologia , Animais , Dieta , Feminino , Fungos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Ácaros/crescimento & desenvolvimento , Pólen , Reprodução
15.
Pest Manag Sci ; 74(4): 861-867, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29064624

RESUMO

BACKGROUND: The application of synthetic insecticides remains the most used tool for the management of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). However, management of this pest in the organic production of soft-skinned fruits is a complex task due to the restricted number of registered products. Here, we assess the toxicity of lime sulfur and evaluate whether lime sulfur-treated strawberry plants affected the oviposition and development of D. suzukii. RESULTS: Lime sulfur exhibited adequate toxicity to D. suzukii (LC50 = 26.6 mL L-1 ) without phytotoxicity to strawberry plants. When D. suzukii females were exposed to lime sulfur-treated plants in no-choice bioassays, oviposition was significantly (t-test, P < 0.05) reduced compared with that on untreated plants. In free-choice bioassays, D. suzukii females laid significantly (paired t-test, P < 0.05) more eggs on untreated plants. Furthermore, in the free-choice bioassays, immature development was slower for adults that originated from eggs laid on lime sulfur-treated plants than from those laid on untreated plants. CONCLUSIONS: Lime sulfur showed adequate control and, therefore, has potential for use as a management tool against D. suzukii infestations in organic production systems. This old, alternative insecticide preparation not only caused adult fly mortality, but also reduced the number of eggs laid on lime sulfur-treated plants. © 2017 Society of Chemical Industry.


Assuntos
Aprendizagem da Esquiva , Compostos de Cálcio/farmacologia , Drosophila/efeitos dos fármacos , Fragaria , Inseticidas/farmacologia , Oviposição/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Feminino , Fragaria/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino
16.
Exp Appl Acarol ; 72(2): 103-114, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28573422

RESUMO

Intraguild predation is the combination of exploitative competition and predation among potential competitors that use similar resources. It has the potential to shape population dynamics and community structure. Although there is much empirical evidence for the occurrence of intraguild predation in natural ecosystems, the study of its effects is mainly limited to short-term microcosm experiments. There is, therefore, certain skepticism about its actual significance in nature. A relevant concern is that there is no consensus regarding criteria to evaluate the possible occurrence of intraguild predation in short-term experiments, and methodological differences may therefore underlie apparent inconsistencies among studies. Our purpose here was to evaluate existing criteria to offer guidance for the design of experiments to determine whether two species may potentially engage in intraguild predation. The criteria are based on the condition that intraguild predators need to experience immediate energetic gains when feeding on the intraguild prey. Thus, a relevant experimental design must quantify predation but also fitness benefits of feeding on the other species, i.e. increases in reproduction, somatic growth, or survival.


Assuntos
Ecossistema , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório/fisiologia , Animais , Modelos Biológicos , Densidade Demográfica , Especificidade da Espécie
17.
J Chem Ecol ; 43(2): 120-128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28084560

RESUMO

The outcome of plant-mediated interactions among herbivores from several feeding guilds has been studied intensively. However, our understanding on the effects of nematode root herbivory on leaf miner oviposition behavior and performance remain limited. In this study, we evaluated whether Meloidogyne incognita root herbivory affects Tuta absoluta oviposition preference on Solanum lycopersicum plants and the development of the resulting offspring. To investigate the M. incognita-herbivory induced plant systemic responses that might explain the observed biological effects, we measured photosynthetic rates, leaf trypsin protease inhibitor activities, and analyzed the profile of volatiles emitted by the leaves of root-infested and non-infested plants. We found that T. absoluta females avoided laying eggs on the leaves of root-infested plants, and that root infestation negatively affected the pupation process of T. absoluta. These effects were accompanied by a strong suppression of leaf volatile emissions, a decrease in photosynthetic rates, and an increase in the activity of leaf trypsin protease inhibitors. Our study reveals that root attack by nematodes can shape leaf physiology, and thereby increases plant resistance.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Mariposas/fisiologia , Oviposição , Folhas de Planta/parasitologia , Solanum/parasitologia , Tylenchoidea/fisiologia , Animais , Comportamento Alimentar/fisiologia , Mariposas/anatomia & histologia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Solanum/metabolismo , Inibidores da Tripsina/metabolismo , Compostos Orgânicos Voláteis/metabolismo
18.
Plant Sci ; 252: 300-310, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717467

RESUMO

Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.


Assuntos
Ciclopentanos/farmacologia , Ácaros/efeitos dos fármacos , Oxilipinas/farmacologia , Solanum lycopersicum/fisiologia , Tetranychidae/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Ciclopentanos/metabolismo , Herbivoria/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácaros/fisiologia , Oviposição/efeitos dos fármacos , Oxilipinas/metabolismo , Comportamento Predatório/efeitos dos fármacos , Reprodução , Tetranychidae/fisiologia
19.
Exp Appl Acarol ; 69(3): 263-76, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27067101

RESUMO

Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators.


Assuntos
Sinais (Psicologia) , Cadeia Alimentar , Comportamento Predatório , Tetranychidae/fisiologia , Animais , Reação de Fuga , Feminino , Especificidade da Espécie
20.
Oecologia ; 180(1): 1-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025574

RESUMO

Plants respond to attacks by herbivores with various defences, which are mounted through the activation of different biochemical pathways that are known to interact. Thus, the attack of a plant by one herbivore species may result in changes in the performances of other species on the same plant. It has been suggested that species with comparable feeding modes induce similar plant defences and such herbivores are therefore expected to have a negative effect on each other's performance. We studied two closely related phytophagous mite species with identical feeding modes. Yet, one of the species (Tetranychus urticae) induces tomato plant defences, whereas the other (T. evansi) reduces them. We found that the "inducing" species benefits from the downregulation of defences by the "reducing" species, which, in turn, suffers from the induction of defences by the inducing species. Moreover, the performances of the two mite species on leaves that were previously attacked by both species simultaneously were intermediate between that on leaves previously attacked by each of the mites separately. The activity of proteinase inhibitor, a defensive compound, was not found to be intermediate in leaves attacked by both species simultaneously--it was almost as high as the activity seen in leaves with defences induced by T. urticae. Oviposition rates of T. urticae showed a nonlinear correlation with inhibitor activity, suggesting that it is potentially problematic to use this activity as an indicator of the level of plant defence. Our results show that herbivores with similar feeding modes have opposite effects on plant defence and differentially affect each other's performance on co-infested plants.


Assuntos
Comportamento Animal , Resistência à Doença , Herbivoria , Ácaros , Oviposição , Folhas de Planta/metabolismo , Solanum lycopersicum/fisiologia , Animais , Ecossistema , Feminino , Solanum lycopersicum/metabolismo , Doenças das Plantas , Inibidores de Proteases/metabolismo , Reprodução , Tetranychidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...