Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(6): 1636-1649, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918114

RESUMO

BACKGROUND: Genetic-based COVID-19 vaccines have proved to be highly effective in reducing the risk of hospitalization and death. Because they were first distributed in a large-scale population, the adenoviral-based vaccines were linked to a very rare thrombosis with thrombocytopenia syndrome, and the interplay between platelets and vaccinations increasingly gained attention. OBJECTIVES: The objective of this article was to study the crosstalk between platelets and the vaccine-induced immune response. METHODS: We prospectively enrolled young healthy volunteers who received the mRNA-based vaccine, BNT162b2 (n = 15), or the adenovirus-based vaccine, AZD1222 (n = 25) and studied their short-term platelet and immune response before and after vaccine injections. In a separate cohort, we retrospectively analyzed the effect of aspirin on the antibody response 1 and 5 months after BNT162b2 vaccination. RESULTS: Here, we show that a faster antibody response to either vaccine is associated with the formation of platelet aggregates with marginal zone-like B cells, a subset geared to bridge the temporal gap between innate and adaptive immunities. However, although the mRNA-based vaccine is associated with a more gradual and tolerogenic response that fosters the crosstalk between platelets and adaptive immunity, the adenovirus-based vaccine, the less immunogenic of the 2, evokes an antiviral-like response during which the platelets are cleared and less likely to cooperate with B cells. Moreover, subjects taking aspirin (n = 56) display lower antibody levels after BNT162b2 vaccination compared with matched individuals. CONCLUSION: Platelets are a component of the innate immune pathways that promote the B-cell response after vaccination. Future studies on the platelet-immune crosstalk post-immunization will improve the safety, efficacy, and strategic administration of next-generation vaccines.


Assuntos
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Vacina BNT162 , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Estudos Retrospectivos , COVID-19/prevenção & controle , Vacinação , Adenoviridae/genética , Aspirina , Imunidade Inata
2.
Res Pract Thromb Haemost ; 7(8): 102262, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38193050

RESUMO

Background: Severe COVID-19 is associated with an excessive immunothrombotic response and thromboinflammatory complications. Vaccinations effectively reduce the risk of severe clinical outcomes in patients with COVID-19, but their impact on platelet activation and immunothrombosis during breakthrough infections is not known. Objectives: To investigate how preemptive vaccinations modify the platelet-immune crosstalk during COVID-19 infections. Methods: Cross-sectional flow cytometry study of the phenotype and interactions of platelets circulating in vaccinated (n = 21) and unvaccinated patients with COVID-19, either admitted to the intensive care unit (ICU, n = 36) or not (non-ICU, n = 38), in comparison to matched SARS-CoV-2-negative patients (n = 48), was performed. Results: In the circulation of unvaccinated non-ICU patients with COVID-19, we detected hyperactive and hyperresponsive platelets and platelet aggregates with adaptive and innate immune cells. In unvaccinated ICU patients with COVID-19, most of whom had severe acute respiratory distress syndrome, platelets had high P-selectin and phosphatidylserine exposure but low capacity to activate integrin αIIbß3, dysfunctional mitochondria, and reduced surface glycoproteins. In addition, in the circulation of ICU patients, we detected microthrombi and platelet aggregates with innate, but not with adaptive, immune cells. In vaccinated patients with COVID-19, who had no acute respiratory distress syndrome, platelets had surface receptor levels comparable to those in controls and did not form microthrombi or platelet-granulocyte aggregates but aggregated avidly with adaptive immune cells. Conclusion: Our study provides evidence that vaccinated patients with COVID-19 are not associated with platelet hyperactivation and are characterized by platelet-leukocyte aggregates that foster immune protection but not excessive immunothrombosis. These findings advocate for the importance of vaccination in preventing severe COVID-19.

3.
J Thromb Haemost ; 20(4): 961-974, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032087

RESUMO

BACKGROUND: A rapid immune response is critical to ensure effective protection against COVID-19. Platelets are first-line sentinels of the vascular system able to rapidly alert and stimulate the immune system. However, their role in the immune response to vaccines is not known. OBJECTIVE: To identify features of the platelet-immune crosstalk that would provide an early readout of vaccine efficacy in adults who received the mRNA-based COVID-19 vaccine (BNT162b2). METHODS: We prospectively enrolled 11 young healthy volunteers (54% females, median age: 28 years) who received two doses of BNT162b2, 21 days apart, and we studied their platelet and immune response before and after each dose of the vaccine (3 and 10 ± 2 days post-injection), in relation to the kinetics of the humoral response. RESULTS: Participants achieving an effective level of neutralizing antibodies before the second dose of the vaccine (fast responders) had a higher leukocyte count, mounted a rapid cytokine response that incremented further after the second dose, and an elevated platelet turnover that ensured platelet count stability. Their circulating platelets were not more reactive but expressed lower surface levels of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-coupled receptor CD31 (PECAM-1) compared to slow responders, and formed specific platelet-leukocyte aggregates, with B cells, just 3 days after the first dose, and with non-classical monocytes and eosinophils. CONCLUSION: We identified features of the platelet-immune crosstalk that are associated with the development of a rapid humoral response to an mRNA-based vaccine (BNT162b2) and that could be exploited as early biomarkers of vaccine efficacy.


Assuntos
Vacina BNT162 , Plaquetas/imunologia , COVID-19 , Imunidade Humoral , Eficácia de Vacinas , Adulto , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Masculino , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...