Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38488044

RESUMO

CONTEXT: Alterations in the lipid metabolism are linked to metabolic disorders such as insulin resistance (IR), obesity and type 2 diabetes (T2D). Regular exercise, particularly combined training (CT), is a well-known non-pharmacological treatment that combines aerobic (AT) and resistance (RT) training benefits. However, it is unclear whether moderate-intensity exercise without dietary intervention induces changes in lipid metabolism to promote a 'healthy lipidome'. OBJECTIVE: The study aimed to investigate the effect of 16 weeks of CT on plasma and white adipose tissue in both sexes, middle-aged subjects with normal weight, obesity and T2D using an ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) untargeted lipidomics approach. METHODS: Body composition, maximum oxygen consumption (VO2 max), strength, and biochemical markers were evaluated before and after the control/training period and correlated with lipid changes. CT consisted of 8 to 10 RT exercises, followed by 35 min of AT (45 -70% VO2 max), 3 times a week for 16 weeks. RESULTS: The CT significantly reduced the levels of saturated and monounsaturated fatty acid side-chains (SFA/MUFA) in sphingolipids, glycerolipids (GL) and glycerophospholipids (GP) as well as reducing fat mass, circumferences and IR. Increased levels of polyunsaturated fatty acids in GPs, and GLs were also observed, along with increased fat-free mass, VO2 max, and strength (all p < 0.05) after training. CONCLUSION: Our study stated that 16 weeks of moderate-intensity CT remodelled the lipid metabolism in OB, and T2D individuals, even without dietary intervention, establishing a link between exercise-modulated lipid markers and mechanisms that reduce IR and obesity-related comorbidities.

2.
Chemosphere ; 349: 140852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048832

RESUMO

Certain environmental chemicals affect the body's energy balance and are known as metabolism disrupting chemicals (MDCs). MDCs have been implicated in the development of metabolic diseases, such as obesity and type 2 diabetes. In contrast to their well-known impact on developing adipocytes, MDC effects leading to altered energy balance and development of insulin resistance in mature white adipocytes, constituents of adult adipose tissue, are largely unclear. Here, we investigated the effects of six well-established environmental MDCs (bisphenol A (BPA), perfluorooctanoic acid (PFOA), triclosan (TCS), p,p-dichlorodiphenyl-dichloroethylene (ppDDE), tributyltin chloride (TBT) and triphenyl phosphate (TPP)) on mature human white adipocytes derived from mesenchymal stem cells in vitro. We aimed to identify biomarkers and sensitive endpoints of their metabolism disrupting effects. While most of the tested exposures had no effect on adipocyte glucose consumption, lipid storage and assessed gene expression endpoints, the highest concentration of triclosan affected the total lipid storage and adipocyte size, as well as glucose consumption and mRNA expression of the glucose transporter GLUT1, leptin and adiponectin. Additionally, an increased expression of adiponectin was observed with TPP and the positive control PPARγ agonist rosiglitazone. In contrast, the lipidomic analysis of the cell culture medium after a 3-day exposure was extremely sensitive and revealed concentration-dependent changes in the extracellular lipidome of adipocytes exposed to nearly all studied chemicals. While some of the extracellular lipidome changes were specific for the MDC used, some effects were found common to several tested chemicals and included increases in lysophosphatidylcholines, glycerophospholipids and ceramides and a decrease in fatty acids, with possible implications in inflammation, lipid and glucose uptake. This study points to early signs of metabolic disruption and likely systemic effects of mature adipocyte exposure to environmental chemicals, as well as to the need to include lipidomic endpoints in the assessment of adverse effects of MDCs.


Assuntos
Diabetes Mellitus Tipo 2 , Triclosan , Humanos , Adipócitos Brancos , Lipidômica , Adiponectina , Triclosan/toxicidade , Glucose/farmacologia
3.
Elife ; 112022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576255

RESUMO

The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.


Malaria kills over half a million people every year worldwide. A single-celled parasite called Plasmodium falciparum is responsible for the most lethal form of the disease. This malaria-causing agent is carried by mosquitos which transmit the parasite to humans through their bite. Once in the bloodstream, the parasite enters red blood cells and starts to replicate so it can go on to infect other cells. Like our cells, P. falciparum is surrounded by a membrane, and further membranes surround a number of its internal compartments. To make these protective coats, the parasite has to gather a nutrient called choline to form an important building block in the membrane. The parasite gets most of its choline by absorbing and digesting a molecule known as lysoPC found in the bloodstream of its host. However, it was unclear precisely how the parasite achieves this. To address this question, Ramaprasad, Burda et al. used genetic and metabolomic approaches to study how P. falciparum breaks down lysoPC. The experiments found that mutant parasites that are unable to make an enzyme called GDPD were able to infect red blood cells, but failed to grow properly once inside the cells. The mutant parasites took up less choline and, as a result, also made fewer membrane building blocks. The team were able to rescue the mutant parasites by supplying them with large quantities of choline, which allowed them to resume growing. Taken together, the findings of Ramaprasad, Burda et al. suggest that P. falciparum uses GDPD to extract choline from lysoPC when it is living in red blood cells. More and more P. falciparum parasites are becoming resistant to many of the drugs currently being used to treat malaria. One solution is to develop new therapies that target different molecules in the parasite. Since it performs such a vital role, GDPD may have the potential to be a future drug target.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Parasitos/metabolismo , Colina/metabolismo , Plasmodium falciparum/genética , Glicerilfosforilcolina/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743227

RESUMO

The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipidômica , Lipoproteínas , Síndrome Metabólica/complicações , Síndrome Metabólica/diagnóstico , Obesidade/complicações , Obesidade Abdominal/complicações , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolinas
5.
Nutrients ; 9(2)2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208791

RESUMO

Several  epidemiological  studies  have  linked  flavonols  with  decreased  risk  of  cardiovascular  disease  (CVD).  However,  some  heterogeneity  in  the  individual  physiological  responses to the consumption of these compounds has been identified. This meta-analysis aimed to  study the effect of flavonol supplementation on biomarkers of CVD risk such as, blood lipids, blood  pressure and plasma glucose, as well as factors affecting their inter-individual variability. Data from  18 human randomized controlled trials were pooled and the effect was estimated using fixed or  random effects meta-analysis model and reported as difference in means (DM). Variability in the  response of blood lipids to supplementation with flavonols was assessed by stratifying various  population subgroups: age, sex, country, and health status. Results showed significant reductions  in total cholesterol (DM = -0.10 mmol/L; 95% CI: -0.20, -0.01), LDL cholesterol (DM = -0.14 mmol/L;  Nutrients 2017, 9, 117  2 of 21  95% CI: -0.21, 0.07), and triacylglycerol (DM = -0.10 mmol/L; 95% CI: -0.18, 0.03), and a significant  increase in HDL cholesterol (DM = 0.05 mmol/L; 95% CI: 0.02, 0.07). A significant reduction was also  observed in fasting plasma glucose (DM = -0.18 mmol/L; 95%CI: -0.29, -0.08), and in blood pressure  (SBP: DM = -4.84 mmHg; 95% CI: -5.64, -4.04; DBP: DM = -3.32 mmHg; 95% CI: -4.09, -2.55).  Subgroup analysis showed a more pronounced effect of flavonol intake in participants from Asian  countries and in participants with diagnosed disease or dyslipidemia, compared to healthy and  normal baseline values. In conclusion, flavonol consumption improved biomarkers of CVD risk,  however, country of origin and health status may influence the effect of flavonol intake on blood  lipid levels.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Flavonóis/administração & dosagem , Adulto , Ásia , Biomarcadores/sangue , Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
6.
Int J Food Sci Nutr ; 66(7): 819-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417700

RESUMO

Phytoestrogens have generated interest in human health in view of their potential effect to reduce the risk of developing chronic diseases. Serum levels of phytoestrogens have been proposed as an alternative to measure the exposure of phytoestrogens. We evaluated the use of serum as a biomarker of phytoestrogen's intake in healthy women. Phytoestrogens in serum (luteolin, kaempferol, equol, biochanin A, formononetin, quercetin, naringenin, coumestrol, secoisolariciresinol, genistein, matairesinol, enterolactone, enterodiol, daidzein, glycitein and resveratrol) were analyzed by HPLC-ESI-MS. Subjects were asked to recall all foods and beverages consumed the previous 24 h. Association of dietary intake and serum concentrations was performed by Spearman correlation. Correlations were found for naringenin (r = 0.47, p < 0.001), luteolin (r = 0.4 p < 0.001), genistein (r = 0.32, p < 0.01) enterolactone (r = 0.35, p = 0.0553), coumestrol (r = 0.26, p = 0.0835) and resveratrol (r = 0.29, p = 0.0517). Serum levels as biomarkers of intake along with a 24-h recall would be useful in order to investigate the relationship between phytoestrogens and health.


Assuntos
Dieta , Fitoestrógenos , Adulto , Biomarcadores/sangue , Feminino , Humanos , México , Pessoa de Meia-Idade , Fitoestrógenos/administração & dosagem , Fitoestrógenos/sangue , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...