Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 167: 103811, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37196910

RESUMO

Naturally fluctuating temperatures provide a constant environmental stress that requires adaptation. Some fungal pathogens respond to heat stress by producing new morphotypes that maximize their overall fitness. The fungal wheat pathogen Zymoseptoria tritici responds to heat stress by switching from its yeast-like blastospore form to hyphae or chlamydospores. The regulatory mechanisms underlying this switch are unknown. Here, we demonstrate that a differential heat stress response is ubiquitous in Z. tritici populations around the world. We used QTL mapping to identify a single locus associated with the temperature-dependent morphogenesis and we found two genes, the transcription factor ZtMsr1 and the protein phosphatase ZtYvh1, regulating this mechanism. We find that ZtMsr1 regulates repression of hyphal growth and induces chlamydospore formation whereas ZtYvh1 is required for hyphal growth. We next showed that chlamydospore formation is a response to the intracellular osmotic stress generated by the heat stress. This intracellular stress stimulates the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) MAPK pathways resulting in hyphal growth. If cell wall integrity is compromised, however, ZtMsr1 represses the hyphal development program and may induce the chlamydospore-inducing genes as a stress-response survival strategy. Taken together, these results suggest a novel mechanism through which morphological transitions are orchestrated in Z. tritici - a mechanism that may also be present in other pleomorphic fungi.


Assuntos
Ascomicetos , Fatores de Transcrição , Temperatura , Fatores de Transcrição/genética , Monoéster Fosfórico Hidrolases , Saccharomyces cerevisiae , Doenças das Plantas/microbiologia
3.
Trends Plant Sci ; 26(8): 836-848, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33752966

RESUMO

Take-all disease, caused by the fungal root pathogen Gaeumannomyces tritici, is considered to be the most important root disease of wheat worldwide. Here we review the advances in take-all research over the last 15 years, focusing on the identification of new sources of genetic resistance in wheat relatives and the role of the microbiome in disease development. We also highlight recent breakthroughs in the molecular interactions between G. tritici and wheat, including genome and transcriptome analyses. These new findings will aid the development of novel control strategies against take-all disease. In light of this growing understanding, the G. tritici-wheat interaction could provide a model study system for root-infecting fungal pathogens of cereals.


Assuntos
Ascomicetos , Microbiota , Doenças das Plantas , Triticum/genética
4.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724407

RESUMO

Reactive oxygen species are toxic byproducts of aerobic respiration that are also important in mediating a diversity of cellular functions. Reactive oxygen species form an important component of plant defenses to inhibit microbial pathogens during pathogen-plant interactions. Tolerance to oxidative stress is likely to make a significant contribution to the viability and pathogenicity of plant pathogens, but the complex network of oxidative stress responses hinders identification of the genes contributing to this trait. Here, we employed a forward genetic approach to investigate the genetic architecture of oxidative stress tolerance in the fungal wheat pathogen Zymoseptoria tritici. We used quantitative trait locus (QTL) mapping of growth and melanization under axenic conditions in two cross-populations to identify genomic regions associated with tolerance to oxidative stress. We found that QTLs associated with growth under oxidative stress as well as inherent growth can affect oxidative stress tolerance, and we identified two uncharacterized genes in a major QTL associated with this trait. Our data suggest that melanization does not affect tolerance to oxidative stress, which differs from what was found for animal pathogens. This study provides a whole-genome perspective on the genetic basis of oxidative stress tolerance in a plant pathogen.


Assuntos
Adaptação Fisiológica , Ascomicetos/genética , Estresse Oxidativo , Locos de Características Quantitativas , Ascomicetos/metabolismo , Divisão Celular , Melaninas/genética , Melaninas/metabolismo
5.
BMC Biol ; 18(1): 99, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782023

RESUMO

BACKGROUND: The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS: We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS: We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.


Assuntos
Ascomicetos/fisiologia , Reprodução Assexuada/fisiologia , Ascomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Triticum/microbiologia
6.
Curr Biol ; 29(18): 3006-3017.e3, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474536

RESUMO

Somatic cell fusion and conspecific cooperation are crucial social traits for microbial unicellular-to-multicellular transitions, colony expansion, and substrate foraging but are also associated with risks of parasitism. We identified a cell wall remodeling (cwr) checkpoint that acts upon cell contact to assess genetic compatibility and regulate cell wall dissolution during somatic cell fusion in a wild population of the filamentous fungus Neurospora crassa. Non-allelic interactions between two linked loci, cwr-1 and cwr-2, were necessary and sufficient to block cell fusion: cwr-1 encodes a polysaccharide monooxygenase (PMO), a class of enzymes associated with extracellular degradative capacities, and cwr-2 encodes a predicted transmembrane protein. Mutations of sites in CWR-1 essential for PMO catalytic activity abolished the block in cell fusion between formerly incompatible strains. In Neurospora, alleles cwr-1 and cwr-2 were highly polymorphic, fell into distinct haplogroups, and showed trans-species polymorphisms. Distinct haplogroups and trans-species polymorphisms at cwr-1 and cwr-2 were also identified in the distantly related genus Fusarium, suggesting convergent evolution. Proteins involved in chemotropic processes showed extended localization at contact sites, suggesting that cwr regulates the transition between chemotropic growth and cell wall dissolution. Our work revealed an allorecognition surveillance system based on kind discrimination that inhibits cooperative behavior in fungi by blocking cell fusion upon contact, contributing to fungal immunity by preventing formation of chimeras between genetically non-identical colonies.


Assuntos
Comunicação Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Alelos , Sequência de Aminoácidos/genética , Comunicação Celular/fisiologia , Fusão Celular , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Filogenia , Polimorfismo Genético/genética
7.
Sci Rep ; 9(1): 9642, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270361

RESUMO

During their life cycles, pathogens have to adapt to many biotic and abiotic environmental stresses to maximize their overall fitness. Morphological transitions are one of the least understood of the many strategies employed by fungal plant pathogens to adapt to constantly changing environments, even though different morphotypes may play important biological roles. Here, we first show that blastospores (the "yeast-like" form of the pathogen typically known only under laboratory conditions) can form from germinated pycnidiospores (asexual spores) on the surface of wheat leaves, suggesting that this morphotype can play an important role in the natural history of Z. tritici. Next, we characterized the morphological responses of this fungus to a series of environmental stresses to understand the effects of changing environments on fungal morphology and adaptation. All tested stresses induced morphological changes, but different responses were found among four strains. We discovered that Z. tritici forms chlamydospores and demonstrated that these structures are better able to survive extreme cold, heat and drought than other cell types. Finally, a transcriptomic analysis showed that morphogenesis and the expression of virulence factors are co-regulated in this pathogen. Our findings illustrate how changing environmental conditions can affect cellular morphology and lead to the formation of new morphotypes, with each morphotype having a potential impact on both pathogen survival and disease epidemiology.


Assuntos
Ascomicetos/ultraestrutura , Meio Ambiente , Microscopia Confocal/métodos , Estresse Oxidativo , Doenças das Plantas/microbiologia , Triticum/microbiologia , Fatores de Virulência/metabolismo , Ascomicetos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno
8.
Front Plant Sci ; 10: 1669, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969895

RESUMO

Cross-kingdom RNA interference (RNAi) has been shown to play important roles during plant-pathogen interactions, and both plants and pathogens can use small RNAs (sRNAs) to silence genes in each other. This bidirectional cross-kingdom RNAi was still unexplored in the wheat-Zymoseptoria tritici pathosystem. Here, we performed a detailed analysis of the sRNA bidirectional crosstalk between wheat and Z. tritici. Using a combination of small RNA sequencing (sRNA-seq) and microRNA sequencing (mRNA-seq), we were able to identify known and novel sRNAs and study their expression and their action on putative targets in both wheat and Z. tritici. We predicted the target genes of all the sRNAs in either wheat or Z. tritici transcriptome and used degradome analysis to validate the cleavage of these gene transcripts. We could not find any clear evidence of a cross-kingdom RNAi acting by mRNA cleavage in this pathosystem. We also found that the fungal sRNA enrichment was lower in planta than during in vitro growth, probably due to the lower expression of the only Dicer gene of the fungus during plant infection. Our results support the recent finding that Z. tritici sRNAs cannot play important roles during wheat infection. However, we also found that the fungal infection induced wheat sRNAs regulating the expression of specific wheat genes, including auxin-related genes, as an immune response. These results indicate a role of sRNAs in the regulation of wheat defenses during Z. tritici infection. Our findings contribute to improve our understanding of the interactions between wheat and Z. tritici.

9.
Mol Plant Pathol ; 19(1): 201-216, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27868326

RESUMO

We conducted a comprehensive analysis of virulence in the fungal wheat pathogen Zymoseptoria tritici using quantitative trait locus (QTL) mapping. High-throughput phenotyping based on automated image analysis allowed the measurement of pathogen virulence on a scale and with a precision that was not previously possible. Across two mapping populations encompassing more than 520 progeny, 540 710 pycnidia were counted and their sizes and grey values were measured. A significant correlation was found between pycnidia size and both spore size and number. Precise measurements of percentage leaf area covered by lesions provided a quantitative measure of host damage. Combining these large and accurate phenotypic datasets with a dense panel of restriction site-associated DNA sequencing (RADseq) genetic markers enabled us to genetically dissect pathogen virulence into components related to host damage and those related to pathogen reproduction. We showed that different components of virulence can be under separate genetic control. Large- and small-effect QTLs were identified for all traits, with some QTLs specific to mapping populations, cultivars and traits and other QTLs shared among traits within the same mapping population. We associated the presence of four accessory chromosomes with small, but significant, increases in several virulence traits, providing the first evidence for a meaningful function associated with accessory chromosomes in this organism. A large-effect QTL involved in host specialization was identified on chromosome 7, leading to the identification of candidate genes having a large effect on virulence.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Triticum/microbiologia , Alelos , Cromossomos Fúngicos/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Estudos de Associação Genética , Padrões de Herança/genética , Escore Lod , Anotação de Sequência Molecular , Fenótipo , Virulência/genética
10.
Mol Plant Microbe Interact ; 31(4): 420-431, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29090630

RESUMO

The fungus Zymoseptoria tritici causes septoria tritici blotch (STB) on wheat, an important disease globally and the most damaging wheat disease in Europe. Despite the global significance of STB, the molecular basis of wheat defense against Z. tritici is poorly understood. Here, we use a comparative transcriptomic study to investigate how wheat responds to infection by four distinct strains of Z. tritici. We examined the response of wheat across the entire infection cycle, identifying both shared responses to the four strains and strain-specific responses. We found that the early asymptomatic phase is characterized by strong upregulation of genes encoding receptor-like kinases and pathogenesis-related proteins, indicating the onset of a defense response. We also identified genes that were differentially expressed among the four fungal strains, including genes related to defense. Genes involved in senescence were induced during both the asymptomatic phase and at late stages of infection, suggesting manipulation of senescence processes by both the plant and the pathogen. Our findings illustrate the need, when identifying important genes affecting disease resistance in plants, to include multiple pathogen strains.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Triticum/genética , Triticum/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Fatores de Tempo , Triticum/imunologia
11.
New Phytol ; 214(2): 619-631, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28164301

RESUMO

Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Genes de Plantas , Triticum/genética , Triticum/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Proteínas Fúngicas/química , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas/genética , Virulência/genética
12.
Mol Plant Microbe Interact ; 30(3): 231-244, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121239

RESUMO

Zymoseptoria tritici is an ascomycete fungus that causes Septoria tritici blotch, a globally distributed foliar disease on wheat. Z. tritici populations are highly polymorphic and exhibit significant quantitative variation for virulence. Despite its importance, the genes responsible for quantitative virulence in this pathogen remain largely unknown. We investigated the expression profiles of four Z. tritici strains differing in virulence in an experiment conducted under uniform environmental conditions. Transcriptomes were compared at four different infection stages to characterize the regulation of gene families thought to be involved in virulence and to identify new virulence factors. The major components of the fungal infection transcriptome showed consistent expression profiles across strains. However, strain-specific regulation was observed for many genes, including some encoding putative virulence factors. We postulate that strain-specific regulation of virulence factors can determine the outcome of Z. tritici infections. We show that differences in gene expression may be major determinants of virulence variation among Z. tritici strains, adding to the already known contributions to virulence variation based on differences in gene sequence and gene presence/absence polymorphisms.


Assuntos
Ascomicetos/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Progressão da Doença , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Transcrição Gênica , Transcriptoma/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Mol Biosyst ; 12(2): 391-403, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26694141

RESUMO

Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca(2+) increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca(2+) in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/metabolismo , Quitosana/farmacologia , Neurospora crassa/metabolismo , Estresse Oxidativo , Transcriptoma/efeitos dos fármacos , Cálcio/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Genes Fúngicos , Homeostase , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/metabolismo
14.
Mol Plant Pathol ; 17(6): 845-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26610174

RESUMO

Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. The disease interaction is characterized by clearly defined temporal phases of infection, ultimately resulting in the death of host tissue. Zymoseptoria tritici is a highly polymorphic species with significant intraspecific variation in virulence profiles. We generated a deep transcriptomic sequencing dataset spanning the entire time course of an infection using a previously uncharacterized, highly virulent Z. tritici strain isolated from a Swiss wheat field. We found that seven clusters of gene transcription profiles explained the progression of the infection. The earliest highly up-regulated genes included chloroperoxidases, which may help the fungus cope with plant defences. The onset of necrotrophy was characterized by a concerted up-regulation of proteases, plant cell wall-degrading enzymes and lipases. Functions related to nutrition and growth characterized late necrotrophy and the transition to saprotrophic growth on dead plant tissue. We found that the peak up-regulation of genes essential for mating coincided with the necrotrophic phase. We performed an intraspecies comparative transcriptomics analysis using a comparable time course infection experiment of the genome reference isolate IPO323. Major components of the fungal infection transcriptome were conserved between the two strains. However, individual small, secreted proteins, proteases and cell wall-degrading enzymes showed strongly differentiated transcriptional profiles between isolates. Our analyses illustrate that successful STB infections involve complex transcriptomic remodelling to up-regulate distinct gene functions. Heterogeneity in transcriptomes among isolates may explain some of the considerable variation in virulence and host specialization found within the species.


Assuntos
Ascomicetos/genética , Perfilação da Expressão Gênica/métodos , Transcrição Gênica , Transcriptoma/genética , Ascomicetos/patogenicidade , Parede Celular/metabolismo , Análise por Conglomerados , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Genes Fúngicos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Análise de Sequência de RNA , Especificidade da Espécie , Fatores de Tempo , Triticum/microbiologia , Regulação para Cima/genética , Virulência/genética
15.
Eukaryot Cell ; 14(3): 265-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595444

RESUMO

The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion.


Assuntos
Proteínas Fúngicas/metabolismo , Fusão de Membrana , Neurospora crassa/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Neurospora crassa/genética , Neurospora crassa/fisiologia , Transporte Proteico , Transcriptoma
16.
Mol Microbiol ; 92(1): 164-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24673848

RESUMO

Despite its essential role in development, molecular mechanisms of membrane merger during cell-cell fusion in most eukaryotic organisms remain elusive. In the filamentous fungus Neurospora crassa, cell fusion occurs during asexual spore germination, where genetically identical germlings show chemotropic interactions and cell-cell fusion. Fusion of germlings and hyphae is required for the formation of the interconnected mycelial network characteristic of filamentous fungi. Previously, a multipass membrane protein, PRM1, was characterized and acts at the step of bilayer fusion in N. crassa. Here we describe the identification and characterization of lfd-1, encoding a single pass transmembrane protein, which is also involved in membrane merger. lfd-1 was identified by a targeted analysis of a transcriptional profile of a transcription factor mutant (Δpp-1) defective in germling fusion. The Δlfd-1 mutant shows a similar, but less severe, membrane merger defect as a ΔPrm1 mutant. By genetic analyses, we show that LFD1 and PRM1 act independently, but share a redundant function. The cell fusion frequency of both Δlfd-1 and ΔPrm1 mutants was sensitive to extracellular calcium concentration and was associated with an increase in cell lysis, which was suppressed by a calcium-dependent mechanism involving a homologue to synaptotagmin.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusão de Membrana/genética , Neurospora crassa/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Deleção de Genes , Genes Fúngicos Tipo Acasalamento , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neurospora crassa/genética , RNA Fúngico/análise , Sinaptotagminas/metabolismo , Fatores de Transcrição/genética , Transcriptoma
17.
PLoS Genet ; 9(8): e1003669, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935534

RESUMO

Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species.


Assuntos
Comunicação Celular/genética , Proteínas Fúngicas/genética , Estudo de Associação Genômica Ampla , Neurospora crassa/genética , Mapeamento Cromossômico , Proteínas Fúngicas/fisiologia , Genótipo , Neurospora crassa/fisiologia
18.
Eukaryot Cell ; 11(11): 1345-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22962278

RESUMO

The evolution of multicellularity has occurred in diverse lineages and in multiple ways among eukaryotic species. For plants and fungi, multicellular forms are derived from ancestors that failed to separate following cell division, thus retaining cytoplasmic continuity between the daughter cells. In networked organisms, such as filamentous fungi, cytoplasmic continuity facilitates the long-distance transport of resources without the elaboration of a separate vascular system. Nutrient translocation in fungi is essential for nutrient cycling in ecosystems, mycorrhizal symbioses, virulence, and substrate utilization. It has been proposed that an interconnected mycelial network influences resource translocation, but the theory has not been empirically tested. Here we show, by using mutants that disrupt network formation in Neurospora crassa (Δso mutant, no fusion; ΔPrm-1 mutant, ∼50% fusion), that the translocation of labeled nutrients is adversely affected in homogeneous environments and is even more severely impacted in heterogeneous environments. We also show that the ability to share resources and genetic exchange between colonies (via hyphal fusion) is very limited in mature colonies, in contrast to in young colonies and germlings that readily share nutrients and genetic resources. The differences in genetic/resource sharing between young and mature colonies were associated with variations in colony architecture (hyphal differentiation/diameters, branching patterns, and angles). Thus, the ability to share resources and genetic material between colonies is developmentally regulated and is a function of the age of a colony. This study highlights the necessity of hyphal fusion for efficient nutrient translocation within an N. crassa colony but also shows that established N. crassa colonies do not share resources in a significant manner.


Assuntos
Hifas/fisiologia , Redes e Vias Metabólicas , Neurospora crassa/fisiologia , Transporte Biológico , Biomarcadores/metabolismo , Carbono/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Hifas/genética , Marcação por Isótopo/métodos , Neurospora crassa/genética , Nitrogênio/metabolismo , Especificidade da Espécie , Esporos Fúngicos/fisiologia , Fatores de Tempo
19.
Nat Rev Microbiol ; 9(6): 440-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21572459

RESUMO

It has been estimated that up to one quarter of the world's biomass is of fungal origin, comprising approximately 1.5 million species. In order to interact with one another and respond to environmental cues, fungi communicate with their own chemical languages using a sophisticated series of extracellular signals and cellular responses. A new appreciation for the linkage between these chemical languages and developmental processes in fungi has renewed interest in these signalling molecules, which can now be studied using post-genomic resources. In this Review, we focus on the molecules that are secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological function.


Assuntos
Comunicação Celular/fisiologia , Fungos/genética , Antibacterianos/metabolismo , Ascomicetos/genética , Ascomicetos/fisiologia , Comunicação Celular/genética , Fungos/crescimento & desenvolvimento , Fungos/fisiologia , Esporos Fúngicos/fisiologia
20.
Appl Microbiol Biotechnol ; 87(6): 2237-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20532757

RESUMO

Antifungal activity of chitosan on plant pathogenic fungi has been widely studied, but little is known about the effect of chitosan on fungal biocontrol agents. In this work, we characterize the increase of conidiation induced by chitosan in fungal pathogens of invertebrates (FPI). Chitosan increased conidiation of FPI, including Beauveria bassiana, widely used as mycoinsecticide, and did not affect conidia viability or pathogenicity. Increased conidiation induced by chitosan is shown to be concentration dependent and is not associated to growth inhibition as observed for the mycoparasitic fungus Trichoderma harzianum. Real-time reverse transcription polymerase chain reaction was used to study transcript levels of two genes involved in conidiation in B. bassiana, the regulatory G protein signaling gene Bbrgs1 and the hydrophobin gene hyd1, at different chitosan concentrations. Higher levels of Bbrgs1 and hyd1 transcripts were detected on chitosan-amended media. No correlation with chitosan concentration was observed for expression of Bbrgs1 unlike hyd1. Bbrgs1 deletion mutant Bbrgs1 showed that chitosan-induced conidiation is independent of Bbrgs1, suggesting an alternative mechanism controlling conidiation in B. bassiana. Our data supports that sporulation increases by chitosan, with spores retaining their viability and pathogenicity, which makes chitosan a suitable compound to increase conidia production in fungi with applications in fungal biotechnology.


Assuntos
Quitosana/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/patogenicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Invertebrados/microbiologia , Controle Biológico de Vetores , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...