Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 139: 299-308; discussion 309-25, 419-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19049003

RESUMO

The interest of nucleation of protein crystals and aggregates (including oligomerization) spans from basic physics theory all the way to biophysics, nanophysics, clinical sciences, biotechnologies, food technologies and polymer-solvent interactions. Understanding nucleation within a theoretical framework capable of providing quantitative predictions and control of nucleation rates, or even the very occurrence of crystallization, is a long-sought goal of remarkable relevance to each of the above fields. A large amount of work has been aimed at such goal, but success has been so far rather limited. Work at our laboratory has more recently highlighted a direct link between nucleation rates and the universal scaling properties of concentration fluctuations occurring in the vicinity of a phase transition. The phase transition here concerned is that of non nucleated liquid-liquid demixing of the solution. This novel universality feature allows viewing nucleation processes within one and the same frame, and to capture all normalized nucleation rates on one and the same "master curve" for different proteins, as a function of one parameter only. The quantitative value of the latter is the result of the joint, non additive effects of protein composition, conformation and state (e.g. oligomers), as well as of the temperature of non nucleated liquid-liquid demixing of the solution at the given protein concentration and at the given conditions of the solution. The present work was undertaken for the purpose of ascertaining if (and if so, in what way) the universality feature can allow the quantitative prediction of nucleation rates changes caused by the addition to the solvent of additives empirically known for their strong effect on such rates, as well as the very occurrence of crystallization. To this purpose we have used PEG (polyethylene glycol), which is perhaps the most familiar and most-used additive, and have measured by static and dynamic light scattering the properties of concentration fluctuation of the system as a function of temperature, for various PEG concentration and polymerisation degrees. Experiments have shown that the action of PEG can in no way be accounted for in terms of changes of specific local contacts or of a one-to-one chaperone-like action. Instead, the effect of PEG is seen to be due to alteration of the thermodynamic properties of the solution. This leaves unchanged the universality features and consequently also the validity and predictive power of the master curve in the various conditions.


Assuntos
Polietilenoglicóis/química , Proteínas/química , Termodinâmica , Cristalização
2.
Biophys J ; 93(9): 3271-8, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17660322

RESUMO

Protein association covers wide interests in biophysics, protein science, and biotechnologies, and it is often viewed as governed by conformation details. More recently, the existence of a universal physical principle governing aggregation/crystallization processes has been suggested by a series of experiments and shown to be linked to the universal scaling properties of concentration fluctuations occurring in the proximity of a phase transition (spinodal demixing in the specific case). Such properties have provided a quantitative basis for capturing kinetic association data on a universal master curve, ruled by the normalized distance of the state of the system from its instability region. Here we report new data on lysozyme crystal nucleation. They strengthen the evidence in favor of universality and show that the system enters the region of universal behavior in a stepwise manner as a result of minor conformation changes. Results also show that the link between conformation details and universal behavior is actuated by interactions mediated by the solvent. Outside the region of universal behavior, nucleation rates become unpredictable and undetectably long.


Assuntos
Modelos Químicos , Muramidase/química , Animais , Galinhas , Dicroísmo Circular , Cristalização , Lasers , Muramidase/metabolismo , Conformação Proteica , Espalhamento de Radiação
3.
Proteins ; 58(2): 426-38, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15573374

RESUMO

We compare the role of a conformational switch and that of a point mutation in the thermodynamic stability of a protein solution and in the consequent propensity toward aggregation. We study sickle-cell hemoglobin (HbS), the beta6 Glu-Val point mutant of adult human hemoglobin (HbA), in its R (CO-liganded) conformation, and compare its aggregation properties to those of both HbS and HbA in their T (unliganded) conformation. Static and dynamic light scattering measurements performed for various hemoglobin concentrations showed critical divergences with mean field exponents as temperature was increased. This allowed determining spinodal data points T(S)(c) by extrapolation. These points were fitted to theoretical expressions of the T(S)(c) spinodal line, which delimits the region where the homogeneous solution becomes thermodynamically unstable against demixing in two sets of denser and dilute mesoscopic domains, while remaining still liquid. Fitting provided model-free numerical values of enthalpy and entropy parameters measuring the stability of solutions against demixing, namely, 93.2 kJ/mol and 314 J/ degrees K-mol, respectively. Aggregation was observed also for R-HbS, but in amorphous form and above physiological temperatures close to the spinodal, consistent with the role played in nucleation by anomalous fluctuations governed by the parameter epsilon = (T - T(S))/T(S). Fourier transform infrared (FTIR) and optical spectroscopy showed that aggregation is neither preceded nor followed by denaturation. Transient multiple interprotein contacts occur in the denser liquid domains for R-HbS, T-HbS, and T-HbA. The distinct effects of their specific nature and configurations, and those of desolvation on the demixing and aggregation thermodynamics, and on the aggregate structure are highlighted.


Assuntos
Hemoglobina Falciforme/química , Monóxido de Carbono , Agregação Celular , Entropia , Humanos , Concentração de Íons de Hidrogênio , Luz , Modelos Químicos , Conformação Molecular , Mutação Puntual , Ligação Proteica , Conformação Proteica , Proteínas/química , Espalhamento de Radiação , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
4.
Proteins ; 55(4): 1053-62, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15146502

RESUMO

Understanding the relation between protein conformational changes and aggregation, and the physical mechanisms leading to such processes, is of primary importance, due to its direct relation to a vast class of severe pathologies. Growing evidence also suggests that oligomeric intermediates, which may occur early in the aggregation pathway, can be themselves pathogenic. The possible cytotoxicity of oligomers of non-disease-associated proteins adds generality to such suggestion and to the interest of studies of oligomer formation. Here we study the early stages of aggregation of Bovine Serum Albumin (BSA), a non pathogenic protein which has proved to be a useful model system. Dynamic light scattering and circular dichroism measurements in kinetic experiments following step-wise temperature rises, show that the "intermediate" form, which initiates large-scale aggregation, is the result of structural and conformational changes and concurrent formation of oligomers, of average size in the range of 100-200 A. Two distinct thresholds are observed. Beyond the first one oligomerization starts and causes partial irreversibility of conformational changes. Beyond the second threshold, additional secondary structural changes occurring in proteins being recruited progress on the same time scale of oligomerization. The concurrent behavior causes a mutual stabilization of oligomerization, and of structural and conformational changes, evidenced by a progressive increase of their irreversibility. This process interaction appears to be pivotal in producing irreversible oligomers.


Assuntos
Soroalbumina Bovina/química , Animais , Bovinos , Dicroísmo Circular , Cinética , Luz , Conformação Proteica , Estrutura Secundária de Proteína , Espalhamento de Radiação , Temperatura
5.
Proteins ; 51(1): 147-53, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12596271

RESUMO

The growing impact of protein aggregation pathologies, together with the current high need for extensive information on protein structures are focusing much interest on the physics underlying the nucleation and growth of protein aggregates and crystals. Sickle Cell Hemoglobin (HbS), a point-mutant form of normal human Hemoglobin (HbA), is the first recognized and best-studied case of pathologically aggregating protein. Here we reanalyze kinetic data on nucleation of deoxy-HbS aggregates by referring them to the (concentration-dependent) temperature T(s) characterizing the occurrence of the phase transition of liquid-liquid demixing (LLD) of the solution. In this way, and by appropriate scaling of kinetic data at different concentrations, so as to normalize their spans, the apparently disparate sets of data are seen to fall on a master curve. Expressing the master curve vs. the parameter epsilon = (T - T(s)) / T(s), familiar from phase transition theory, allows eliciting the role of anomalously large concentration fluctuations associated with the LLD phase transition and also allows decoupling quantitatively the role of such fluctuations from that of microscopic, inter-protein interactions leading to nucleation. Referring to epsilon shows how in a narrow temperature span, that is at T - T(s), nucleation kinetics can undergo orders-of-magnitude changes, unexpected in terms of ordinary chemical kinetics. The same is true for similarly small changes of other parameters (pH, salts, precipitants), capable of altering T(s) and consequently epsilon. This offers the rationale for understanding how apparently minor changes of parameters can dramatically affect protein aggregation and related diseases.


Assuntos
Hemoglobina Falciforme/química , Humanos , Cinética , Conformação Proteica , Solubilidade , Temperatura
6.
Biopolymers ; 59(1): 51-64, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11343280

RESUMO

This work concerns the aggregation properties of (Gly-Val-Gly-Val-Pro)(251) rec, a polypentapeptide reflecting a highly conserved repetitive unit of the bioelastomer, elastin. On raising the temperature of aqueous solutions above 25 degrees C, this polypeptide was already known to undergo concurrent conformational changes (hydrophobic folding), phase separation, and self-assembly with formation of aggregated three-stranded filaments composed of dynamic polypeptide helices, called beta-spirals. Aggregates obtained from the solution can be shaped into bands that acquire entropic elastic properties upon gamma-irradiation and can perform a variety of energy conversions. Previous studies have shown that aggregation is prompted by the (diverging) critical fluctuations of concentration occurring in the solution, in vicinity of its spinodal line. Here, we present combined circular dicroism (CD) and light scattering experiments, and independent fittings of experimental data to the theoretical spinodal and binodal (coexistence) lines. Results show the following logical and causal sequence of processes: (a) Smooth and progressive conformational changes promoted by concentration fluctuations occurring as temperature is raised "pull down" (in the temperature scale) the instability region of the solution. (b) This further promotes critical fluctuations. (c) The related locally high concentration prompts a further substantial conformational change ending in triple-helix formation and coacervation. (d) This intertwining of processes, covering different length scales (from that of individual peptides to the mesoscopic one of demixed regions), is related to the fact that solvent-induced interactions play a strong role over the entire scale span. These results concur with other recent ones in pointing out that process interactions over many length-scales probably reflect a frequent if not ubiquitous pattern in protein aggregation. This may be highly relevant to the desirable deep understanding of such phenomenon, whose interests cover many fields.


Assuntos
Elastômeros/química , Animais , Dimerização , Humanos , Nefelometria e Turbidimetria , Conformação Proteica , Sequências Repetitivas de Ácido Nucleico , Termodinâmica
7.
J Biol Phys ; 27(2-3): 133-45, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23345739

RESUMO

We discuss features of the effect of solvent on protein folding andaggregation, highlighting the physics related to the particulate nature and the peculiar structure of the aqueous solvent, and the biological significance of interactions between solvent and proteins. To this purpose we use a generalized energy landscape of extended dimensionality. A closer look at the properties of solvent induced interactions and forces proves useful for understanding the physical grounds of `ad hoc' interactions and for devising realistic ways of accounting for solvent effects. The solvent has long been known to be a crucially important part of biological systems, and times appear mature for it to be adequately accounted for in the protein folding problem. Use of the extended dimensionality energy landscape helpseliciting the possibility of coupling among conformational changes and aggregation, such as proved by experimental data in the literature.

8.
Proteins ; 37(1): 116-20, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10451555

RESUMO

A strong interest is currently focused on protein self-association and deposit. This usually involves conformational changes of the entire protein or of a fragment. It can occur even at low concentrations and is responsible for pathologies such as systemic amyloidosis, Alzheimer's and Prion diseases, and other neurodegenerative pathologies. Readily available proteins, exhibiting at low concentration self-association properties related to conformational changes, offer very convenient model systems capable of providing insight into this class of problems. Here we report experiments on bovine serum albumin, showing that the process of conformational change of this protein towards an intermediate form required for coagulation occurs simultaneously and interacts with two more processes: mesoscopic demixing of the solution and protein cross-linking. This pathway of three interacting processes allows coagulation even at very low concentrations, and it has been recently observed also in the case of a nonpeptidic polymer. It could therefore be a fairly common feature in polymer coagulation/gelation. Proteins 1999;37:116-120.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Proteínas do Tecido Nervoso/química , Doenças Priônicas/metabolismo , Conformação Proteica , Animais , Bovinos , Dicroísmo Circular , Elasticidade , Humanos , Proteínas do Tecido Nervoso/metabolismo , Raios Ultravioleta , Viscosidade
9.
Biophys J ; 77(5): 2470-8, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20540927

RESUMO

Molecular dynamics simulations using a simple multielement model solute with internal degrees of freedom and accounting for solvent-induced interactions to all orders in explicit water are reported. The potential energy landscape of the solute is flat in vacuo. However, the sole untruncated solvent-induced interactions between apolar (hydrophobic) and charged elements generate a rich landscape of potential of mean force exhibiting typical features of protein landscapes. Despite the simplicity of our solute, the depth of minima in this landscape is not far in size from free energies that stabilize protein conformations. Dynamical coupling between configurational switching of the system and hydration reconfiguration is also elicited. Switching is seen to occur on a time scale two orders of magnitude longer than that of the reconfiguration time of the solute taken alone, or that of the unperturbed solvent. Qualitatively, these results are unaffected by a different choice of the water-water interaction potential. They show that already at an elementary level, solvent-induced interactions alone, when fully accounted for, can be responsible for configurational and dynamical features essential to protein folding and function.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Solventes/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Termodinâmica
10.
Biophys J ; 73(1): 31-7, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9199768

RESUMO

We report results of molecular dynamics (MD) simulations of composite model solutes in explicit molecular water solvent, eliciting novel aspects of the recently demonstrated, strong many-body character of hydration. Our solutes consist of identical apolar (hydrophobic) elements in fixed configurations. Results show that the many-body character of PMF is sufficiently strong to cause 1) a remarkable extension of the range of hydrophobic interactions between pairs of solute elements, up to distances large enough to rule out pairwise interactions of any type, and 2) a SIF that drives one of the hydrophobic solute elements toward the solvent rather than away from it. These findings complement recent data concerning SIFs on a protein at single-residue resolution and on model systems. They illustrate new important consequences of the collective character of hydration and of PMF and reveal new aspects of hydrophobic interactions and, in general, of SIFs. Their relevance to protein recognition, conformation, function, and folding and to the observed slight yet significant nonadditivity of functional effects of distant point mutations in proteins is discussed. These results point out the functional role of the configurational and dynamical states (and related statistical weights) corresponding to the complex configurational energy landscape of the two interacting systems: biomolecule + water.


Assuntos
Modelos Químicos , Soluções , Solventes , Água , Simulação por Computador , Modelos Moleculares , Termodinâmica
12.
J Biomol Struct Dyn ; 1(2): 473-86, 1983 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-6400885

RESUMO

Thermodynamic interpretation of experiments with isotopically perturbed solvent supports the view that solvent stereodynamics is directly relevant to thermodynamic stability of biomolecules. According with the current understanding of the structure of the aqueous solvent, in any stereodynamic configuration of the latter, connectivity pathways are identifiable for their topologic and order properties. Perturbing the solvent by isotopic substitution or, e.g., by addition of co-solvents, can therefore be viewed as reinforcing or otherwise perturbing these topologic structures. This microscopic model readily visualizes thermodynamic interpretation. In conclusion, the topologic stereodynamic structures of connectivity pathways in the solvent, as modified by interaction with solutes, acquire a specific thermodynamic and biological significance, and the problem of thermodynamic and functional stability of biomolecules is seen in its full pertinent phase space.


Assuntos
Conformação Molecular , Deutério , Modelos Químicos , Solventes , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...