Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684213

RESUMO

A methodology based on the use of asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS with size fraction-targeted isotope dilution analysis (IDA) has been developed, validated, and applied for the first time to determine the mass fraction of nanoscale silica (SiO2). For this purpose, 29Si-enriched SiO2 nanoparticles, to be used as an IDA spike/internal standard, were synthesized and characterized in-house. Double IDA was used to quantify an aqueous suspension of Stöber silica particles of similar characteristics to those of the 29SiO2 nanoparticle (NP) spike using a representative test material of natural Si isotopic composition as the calibrant. For fumed SiO2 NP in a highly complex food matrix, a methodology based on single IDA with AF4/ICP-MS using the same 29SiO2 NP spike was developed and validated. Relative expanded measurement uncertainties (k = 2) of 4% (double IDA) and 8% (single IDA) were achieved for nanoscale silica mass fractions of 5143 and 107 mg kg-1 in water suspension and food matrix, respectively. To assess the accuracy of AF4/ICP-IDMS for the characterization of SiO2 NP in a food matrix, standard addition measurements on samples spiked with Aerosil AF200, also in-house characterized for Si mass fraction, were undertaken, with an average recovery of 95.6 ± 4.1% (RSD, n = 3) obtained. The particle-specific IDA data obtained for both SiO2 NP-containing samples were also compared with that of post-AF4 channel external calibration using inorganic Si standards. The mass fractions obtained by IDA agreed well with those obtained by external calibration within their associated measurement uncertainties.

2.
Nano Lett ; 23(24): 11975-11981, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079425

RESUMO

Multiple exciton physics in semiconductor nanocrystals play an important role in optoelectronic devices. This work investigates radially alloyed CdZnSe/CdS nanocrystals with suppressed Auger recombination due to the spatial separation of carriers, which also underpins their performance in optical gain and scintillation experiments. Due to suppressed Auger recombination, the biexciton lifetime is greater than 10 ns, much longer than most nanocrystals. The samples show optical gain, amplified spontaneous emission, and lasing at thresholds <2 excitons per particle. They also show broad gain bandwidth (>500 meV) encompassing 4 amplified spontaneous emission bands. Similarly enabled by slowed multiple exciton relaxation, the samples display strong performance in scintillating films under X-ray illumination. The CdZnSe/CdS samples have fast radioluminescence rise (<80 ps) and decay times (<5 ns), light yields up to 6700 photons·MeV-1, and the demonstrated capacity for incorporation into large area films for scintillation imaging.

3.
Sci Total Environ ; 897: 165387, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423289

RESUMO

This study explores the transport and retention of CdSe/ZnS quantum dot (QD) nanoparticles in water-saturated sand columns as a function of electrolytes (Na+ and Ca2+), ionic strength, organic ligand citrate, and Suwannee River natural organic matter (SRNOM). Numerical simulations were carried out to understand the mechanisms that govern the transport and interactions of QDs in porous media and to assess how environmental parameters impact these mechanisms. An increase in the ionic strength of NaCl and CaCl2 increased QDs retention in porous media. The reduction of the electrostatic interactions screened by dissolved electrolyte ions and the increase of divalent bridging effect are the causes for this enhanced retention behavior. Citrate or SRNOM enhanced QDs transport in NaCl and CaCl2 systems by either increasing the repulsion energy barrier or inducing the steric interactions between QDs and the quartz sand collectors. A non-exponential decay characterized the retention profiles of QDs along the distance to the inlet. The modeling results indicated the four models containing the attachment, detachment, and straining terms - Model 1: M1-attachment, Model 2: M2-attachment and detachment, Model 3: M3-straining, and Model 4: M4-attachment, detachment, and straining - closely simulated the observed breakthrough curves (BTCs) but inadequately described the retention profiles.

4.
Nano Lett ; 22(23): 9470-9476, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36455210

RESUMO

Materials for studying biological interactions and for alternative energy applications are continuously under development. Semiconductor quantum dots are a major part of this landscape due to their tunable optoelectronic properties. Size-dependent quantum confinement effects have been utilized to create materials with tunable bandgaps and Auger recombination rates. Other mechanisms of electronic structural control are under investigation as not all of a material's characteristics are affected by quantum confinement. Demonstrated here is a new structure-property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier's kinetic energy on a parabolic potential energy surface. This charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level. These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging, and create inroads for the development of other new advanced materials.


Assuntos
Nanopartículas , Pontos Quânticos , Pontos Quânticos/química , Nanopartículas/química , Semicondutores , Elétrons , Eletrônica
5.
Nano Lett ; 22(10): 4020-4027, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35499493

RESUMO

Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 µm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.


Assuntos
Células Dendríticas , Pontos Quânticos , Antígenos , Linhagem Celular , Vacinas Sintéticas
6.
J Chem Phys ; 155(16): 164201, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717352

RESUMO

A microscopy platform that leverages the arrival time of individual photons to enable 3D single-particle tracking of fast-moving (translational diffusion coefficient of ≃3.3 µm2/s) particles in high-background environments is reported here. It combines a hardware-based time-gating module, which enables the rate of photon processing to be as high as 100 MHz, with a two-photon-excited 3D single-particle tracking confocal microscope to enable high sample penetration depth. Proof-of-principle experiments where single quantum dots are tracked in solutions containing dye-stained cellulose, are shown with tracking performance markedly improved using the hardware-based time-gating module. Such a microscope design is anticipated to be of use to a variety of communities who wish to track single particles in cellular environments, which commonly have high fluorescence and scattering background.

7.
Nanoscale ; 13(10): 5519-5529, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33688882

RESUMO

We report single-particle characterization of membrane-penetrating semiconductor quantum dots (QDs) in T cell lymphocytes. We functionalized water-soluble CdSe/CdZnS QDs with a cell-penetrating peptide composed of an Asp-Ser-Ser (DSS) repeat sequence. DSS and peptide-free control QDs displayed concentration-dependent internalization. Intensity profiles from single-particle imaging revealed a propensity of DSS-QDs to maintain a monomeric state in the T cell cytosol, whereas control QDs formed pronounced clusters. Single-particle tracking showed a direct correlation between individual QD clusters' mobility and aggregation state. A significant portion of control QDs colocalized with an endosome marker inside the T cells, while the percentage of DSS-QDs colocalized dropped to 9%. Endocytosis inhibition abrogated the internalization of control QDs, while DSS-QD internalization only mildly decreased, suggesting an alternative cell-entry mechanism. Using 3D single-particle tracking, we captured the rapid membrane-penetrating activity of a DSS-QD. The ability to characterize membrane penetrating activities in live T cells creates inroads for the optimization of gene therapy and drug delivery through the use of novel nanomaterials.


Assuntos
Preparações Farmacêuticas , Pontos Quânticos , Citosol , Imunoterapia , Linfócitos T
8.
Environ Sci Pollut Res Int ; 28(7): 8050-8073, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33051847

RESUMO

The risks of environmental exposures of quantum dot (QD) nanoparticles are increasing, but these risks are difficult to assess because fundamental questions remain about factors affecting the mobility of QDs. The objective of this study is to help address this shortcoming by evaluating the physico-chemical mechanisms controlling the transport and retention of CdSe/ZnS QDs under various environmental conditions. The approach was to run a series of laboratory-scale column experiments where QDs were transported through saturated porous media with different pH values and concentrations of citrate and Suwannee River natural organic matter (SRNOM). Numerical simulations were then conducted and compared with the laboratory data in order to evaluate parameters controlling transport. QD suspensions were injected into the column in an upward direction and ICP-MS used to analyze Cd2+ concentrations (C) in column effluent and sand porous media samples. The increase in the background solution pH values enhanced the QD transport and decreased the QD retention. QD transport recovery percentages obtained from the column effluent samples were 2.6%, 83.2%, 101.7%, 96.5%, and 98.9%, at pH levels of 1.5, 3.5, 5, 7, and 9, respectively. The effects of citrate and SRNOM on the transport and retention of QDs were pH dependent as reflected in the influence of the electrostatic and steric interactions between QDs and sand surfaces. QDs were mobile under unfavorable deposition conditions at environmentally relevant pHs (i.e., 5, 7, and 9). Under favorable pH conditions for deposition (i.e., 1.5), QDs were completely retained within the porous media. The retention profiles of QDs showed a non-exponential decay with distance to the inlet, attributed to multiple deposition rates caused by the QD particles and surface heterogeneities of the quartz silica sand. Results of the diameter ratios of QDs to the median sand grains, in suspensions of DI water at pH 1.5, of citrate at pH 1.5, and of citrate at pH 3.5 indicate straining as the dominating mechanism for QD retention in porous media. The blocking effect and straining were significant under favorable deposition conditions and the detachment effect was non-negligible under unfavorable deposition conditions. Physico-chemical attachment and straining are the governing mechanisms that control the retention of QDs. Overall, experimental results indicate that aggregation, deposition, straining, blocking, and DLVO-type interactions affect the advective transport and retention of QDs in saturated porous media. The simulations were conducted using models that include terms describing attachment, detachment, and straining terms-model 1: M1-attachment, model 2: M2-attachment and detachment, model 3: M3-straining, and model 4: M4-attachment, detachment, and straining. The results from simulations with M2-attachment and detachment and M4-attachment, detachment, and straining matched best the observed breakthrough curves, but all four models inadequately described the retention profiles. Our findings demonstrate that QDs are mobile in porous media under a wide range of physico-chemical conditions representative of the natural environment. The mobility behavior of QDs in porous media indicated the potential risk of soil and groundwater contamination.


Assuntos
Compostos de Cádmio , Nanopartículas , Pontos Quânticos , Compostos de Selênio , Ligantes , Porosidade , Dióxido de Silício , Sulfetos , Compostos de Zinco
9.
Nanoscale ; 12(45): 23052-23060, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33179684

RESUMO

Semiconductor quantum dots (QDs) are bright fluorophores that have significant utility for imaging and sensing applications. Core QDs are often employed in chemosensing via redox processes that modulates their fluorescence in the presence of an analyte. However, such particles lack robust surface passivation and generally contain a sizable portion of nonfluorescent QDs, which is detrimental to the detection limit. We investigated an approach to "turn on" non-fluorescent core QDs by lightly overcoating them with a thin shell of a higher bandgap semiconductor. The shell augments the population of sensing chromophores and increases the emission lifetime; however, it simultaneously mollifies redox processes that are responsible for analyte sensitivity to begin with. This balancing act was successfully applied to enhance the sensitivity of CdZnS/ZnS QDs towards 2,4,6-trinitrotoluene (TNT). Unexpectedly, it was found that CdZnS/ZnS QDs with very thick shells retained substantial sensitivity to TNT. This observation may be due to close coupling of the reduced substrate with the QD hole that is enabled by the near-degeneracy of holes in the core CdZnS and ZnS shell. The ability of core/shell QDs to retain substantial reducing power may have implications for other applications that can benefit from the enhanced stability of robust core/shell nanomaterials.

10.
J Colloid Interface Sci ; 498: 298-305, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28343127

RESUMO

The development of tissue specific magnetic resonance imaging (MRI) contrast agents (CAs) is very desirable to achieve high contrast ratio combined with excellent anatomical details. To this end, we introduce a highly effective manganese(II) containing silica material, with the aim to shorten the longitudinal (T1) relaxation time. The microporous silica nanospheres (MSNSs) with enlarged porosity and specific surface area were prepared by a surfactant assisted aqueous method. Subsequently, the surface silanol groups were amino-functionalized, reacted with diethylenetriaminepentaacetic (DTPA) dianhydride and finally deposited with Mn2+. After comprehensive characterization, the MRI properties of functionalized MSNSs were investigated. The resulting nanospheres demonstrated substantial contrast enhancement during the in vitro MRI investigations, which was also evidenced by significant contrast enhancement on T1-weighted MR images in vivo. Moreover, in vitro cytotoxicity assay of functionalized MSNSs on hepatocyte mono- and hepatocyte-Kuppfer cell co-cultures showed no significant decrease in cell viability. Our findings confirmed our hypothesis, that Mn2+-chelating MSNSs are appropriate candidates for liver-specific T1-weighted MRI CAs with high relaxivities (r1=7.18mM-1s-1).


Assuntos
Quelantes/química , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Manganês/química , Nanosferas/química , Dióxido de Silício/química , Aminas/química , Animais , Linhagem Celular , Sobrevivência Celular , Hepatócitos/citologia , Humanos , Fígado/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Ácido Pentético/análogos & derivados , Ácido Pentético/química , Porosidade , Ratos Wistar , Propriedades de Superfície
11.
Front Chem ; 3: 56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539428

RESUMO

This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use.

12.
J Colloid Interface Sci ; 445: 161-165, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617615

RESUMO

A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated.


Assuntos
Nanopartículas/análise , Dióxido de Silício/análise , Silício/química , Cloretos/química , Fracionamento por Campo e Fluxo , Técnicas de Diluição do Indicador , Isótopos/química , Espectrometria de Massas , Espalhamento a Baixo Ângulo , Silanos/química , Compostos de Silício/química , Difração de Raios X
13.
J Colloid Interface Sci ; 390(1): 34-40, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23068887

RESUMO

A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity.


Assuntos
Etanol/química , Silanos/química , Dióxido de Silício/química , Ácido Acético/química , Aminas/química , Coloides , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...