Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 13: 952267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059503

RESUMO

Dysfunctional complement activation and Toll-like receptor signaling immediately after trauma are associated with development of trauma-induced coagulopathy and multiple organ dysfunction syndrome. We assessed the efficacy of the combined inhibition therapy of complement factor C5 and the TLR co-receptor CD14 on thrombo-inflammation and organ damage in an exploratory 72-h polytrauma porcine model, conducted under standard surgical and intensive care management procedures. Twelve male pigs were subjected to polytrauma, followed by resuscitation (ATLS® guidelines) and operation of the femur fracture (intramedullary nailing technique). The pigs were allocated to combined C5 and CD14 inhibition therapy group (n=4) and control group (n=8). The therapy group received intravenously C5 inhibitor (RA101295) and anti-CD14 antibody (rMil2) 30 min post-trauma. Controls received saline. Combined C5 and CD14 inhibition reduced the blood levels of the terminal complement complex (TCC) by 70% (p=0.004), CRP by 28% (p=0.004), and IL-6 by 52% (p=0.048). The inhibition therapy prevented the platelet consumption by 18% and TAT formation by 77% (p=0.008). Moreover, the norepinephrine requirements in the treated group were reduced by 88%. The inhibition therapy limited the organ damage, thereby reducing the blood lipase values by 50% (p=0.028), LDH by 30% (p=0.004), AST by 33%, and NGAL by 30%. Immunofluorescent analysis of the lung tissue revealed C5b-9 deposition on blood vessels in five from the untreated, and in none of the treated animals. In kidney and liver, the C5b-9 deposition was similarly detected mainly the untreated as compared to the treated animals. Combined C5 and CD14 inhibition limited the inflammatory response, the organ damage, and reduced the catecholamine requirements after experimental polytrauma and might be a promising therapeutic approach.


Assuntos
Insuficiência de Múltiplos Órgãos , Traumatismo Múltiplo , Animais , Complemento C5 , Complexo de Ataque à Membrana do Sistema Complemento , Inflamação , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Traumatismo Múltiplo/complicações , Suínos
3.
Neurobiol Dis ; 174: 105877, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162738

RESUMO

BACKGROUND: Systemic and neuroinflammatory processes play key roles in neurodegenerative diseases such as Parkinson's disease (PD). Physical trauma which induces considerable systemic inflammatory responses, represents an evident environmental factor in aging. However, little is known about the impact of physical trauma, on the immuno-pathophysiology of PD. Especially blunt chest trauma which is associated with a high morbidity and mortality rate in the elderly population, can induce a strong pulmonary and systemic inflammatory reaction. Hence, we sought out to combine a well-established thoracic trauma mouse model with a well-established PD mouse model to characterize the influence of physical trauma to neurodegenerative processes in PD. METHODS: To study the influence of peripheral trauma in a PD mouse model we performed a highly standardized blunt thorax trauma in a well-established PD mouse model and determined the subsequent local and systemic response. RESULTS: We could show that blunt chest trauma leads to a systemic inflammatory response which is quantifiable with increased inflammatory markers in bronchoalveolar fluids (BALF) and plasma regardless of the presence of a PD phenotype. A difference of the local inflammatory response in the brain between the PD group and non-PD group could be detected, as well as an increase in the formation of oligomeric pathological alpha-Synuclein (asyn) suggesting an interplay between peripheral thoracic trauma and asyn pathology in PD. CONCLUSION: Taken together this study provides evidence that physical trauma is associated with increased asyn oligomerization in a PD mouse model underlining the relevance of PD pathogenesis under traumatic settings.


Assuntos
Doença de Parkinson , Traumatismos Torácicos , Ferimentos não Penetrantes , Animais , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Parkinson/patologia , Traumatismos Torácicos/patologia , Ferimentos não Penetrantes/patologia
4.
Shock ; 58(4): 332-340, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018298

RESUMO

ABSTRACT: Abdominal trauma (AT) is of major global importance, particularly because the civil, terroristic, and military traumatic potential of blast injuries has increased. The consequences of blunt abdominal injuries are highly variable and frequently underestimated or even overlooked. However, the underlying path mechanisms and subsequent innate immune response remain poorly understood. Therefore, we investigated the spatiotemporal local and systemic effects of a standardized blast-induced blunt AT on the intestine and innate immune response. In an established AT model, 66 male C57Bl6 mice were anesthetized and exposed to either a single blast wave centered on the epigastrium or control treatment (sham). At 2, 6, or 24 hours after trauma induction, animals were sacrificed. In 16 of 44 (36%) AT animals, one or more macroscopically visible injuries of the intestine were observed. Epithelial damage was detected by histological analysis of jejunum and ileum tissue samples, quantified by the Chiu score and by increased plasma concentrations of the intestinal fatty acid-binding protein, an enterocyte damage marker. Moreover, in the early posttraumatic period, elevated syndecan-1, claudin-5, and mucin-2 plasma levels also indicated alterations in the gut-blood barrier. Increased levels of pro-inflammatory cytokines such as TNF and macrophage inflammatory protein 2 in tissue homogenates and plasma indicate a systemic immune activation after blunt AT. In conclusion, we detected early morphological intestinal damage associated with high, early detectable intestinal fatty acid-binding protein plasma levels, and a considerable time- and dose-dependent impairment of the gut-blood barrier in a newly established mouse model of blunt AT. It appears to be a sufficient model for further studies of the intestinal immunopathophysiological consequences of AT and the evaluation of novel therapeutic approaches.


Assuntos
Traumatismos Abdominais , Ferimentos não Penetrantes , Animais , Masculino , Camundongos , Quimiocina CXCL2 , Mucina-2 , Sindecana-1 , Claudina-5 , Camundongos Endogâmicos C57BL , Citocinas , Imunidade Inata , Proteínas de Ligação a Ácido Graxo
5.
Eur J Trauma Emerg Surg ; 48(6): 4431-4444, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35831749

RESUMO

BACKGROUND: Polytrauma is often accompanied by ischaemia-reperfusion injury to tissues and organs, and the resulting series of immune inflammatory reactions are a major cause of death in patients. The liver is one of the largest organs in the body, a characteristic that makes it the most vulnerable organ after multiple injuries. In addition, the liver is an important digestive organ that secretes a variety of inflammatory mediators involved in local as well as systemic immune inflammatory responses. Therefore, this review considers the main features of post-traumatic liver injury, focusing on the immuno-pathophysiological changes, the interactions between liver organs, and the principles of treatment deduced. METHODS: We focus on the local as well as systemic immune response involving the liver after multiple injuries, with emphasis on the pathophysiological mechanisms. RESULTS: An overview of the mechanisms underlying the pathophysiology of local as well as systemic immune responses involving the liver after multiple injuries, the latest research findings, and the current mainstream therapeutic approaches. CONCLUSION: Cross-reactivity between various organs and cascade amplification effects are among the main causes of systemic immune inflammatory responses after multiple injuries. For the time being, the pathophysiological mechanisms underlying this interaction remain unclear. Future work will continue to focus on identifying potential signalling pathways as well as target genes and intervening at the right time points to prevent more severe immune inflammatory responses and promote better and faster recovery of the patient.


Assuntos
Traumatismo Múltiplo , Traumatismo por Reperfusão , Humanos , Fígado , Isquemia , Reperfusão
6.
Shock ; 57(6): 260-267, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759306

RESUMO

ABSTRACT: Thoracic trauma is a major cause of mortality due to the associated inflammatory acute respiratory distress syndrome and morbidity due to impaired tissue regeneration. Trauma-induced lung inflammation is characterized by the early recruitment of cells with pro- or anti-inflammatory activity to the lung. Therapeutic interventions reducing the level of tissue inflammation may result in decreased tissue damage and improved healing and recovery. Stem cells might be able to improve trauma outcome via immunomodulation or by enhancing tissue regeneration.Here, we describe the migratory dynamics of murine mesenchymal, hematopoietic and endothelial stem and progenitor cells (SPCs) as well as mature inflammatory cells (monocytes, neutrophils, lymphocytes) to peripheral blood (PB) and lung tissue between 0.2 and 48 h post-blunt chest trauma (TXT). We demonstrate that the kinetics of immune cell and SPC distribution upon trauma are both cell-type and tissue-dependent. We identified a transient, early increase in the number of inflammatory cells in PB and lung at 2 h post-TXT and a second wave of infiltrating SPCs in lungs by 48 h after TXT induction, suggesting a role for SPCs in tissue remodeling after the initial inflammatory phase. Cxcl12/Cxcr4 blockade by AMD3100 within the first 6 h after TXT, while inducing a strong and coordinated mobilization of SPCs and leukocytes to PB and lung tissue, did not significantly affect TXT associated inflammation or tissue damage as determined by inflammatory cytokine levels, plasma markers for organ function, lung cell proliferation and survival, and myofibroblast/fibroblast ratio in the lung. Further understanding the dynamics of the distribution of endogenous SPCs and inflammatory cells will therefore be indispensable for stem cell-based or immunomodulation therapies in trauma.


Assuntos
Traumatismos Torácicos , Ferimentos não Penetrantes , Animais , Benzilaminas , Ciclamos , Mobilização de Células-Tronco Hematopoéticas , Inflamação , Camundongos , Traumatismos Torácicos/terapia
7.
FASEB J ; 35(12): e22038, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748229

RESUMO

Abdominal trauma (AT) is of major global importance, particularly with the increased potential for civil, terroristic, and military trauma. The injury pattern and systemic consequences of blunt abdominal injuries are highly variable and frequently underestimated or even missed, and the pathomechanisms remain still poorly understood. Therefore, we investigated the temporal-spatial organ and immune response after a standardized blast-induced blunt AT. Anesthetized mice were exposed to a single blast wave centered on the epigastrium. At 2, 6, or 24 h after trauma, abdominal organ damage was assessed macroscopically, microscopically, and biochemically. A higher degree of trauma severity, determined by a reduction of the distance between the epigastrium and blast inductor, was reflected by a reduced survival rate. The hemodynamic monitoring during the first 120 min after AT revealed a decline in the mean arterial pressure within the first 80 min, whereas the heart rate remained quite stable. AT induced a systemic damage and inflammatory response, evidenced by elevated HMGB-1 and IL-6 plasma levels. The macroscopic injury pattern of the abdominal organs (while complex) was consistent, with the following frequency: liver > pancreas > spleen > left kidney > intestine > right kidney > others > lungs and was reflected by microscopic liver and pancreas damages. Plasma levels of organ dysfunction markers increased during the first 6 h after AT and subsequently declined, indicating an early, temporal impairment of the function on a multi-organ level. The established highly reproducible murine blunt AT, with time- and trauma-severity-dependent organ injury patterns, systemic inflammatory response, and impairment of various organ functions, reflects characteristics of human AT. In the future, this model may help to study the complex immuno-pathophysiological consequences and innovative therapeutic approaches after blunt AT.


Assuntos
Traumatismos Abdominais/complicações , Injúria Renal Aguda/patologia , Traumatismos por Explosões/complicações , Fígado/patologia , Traumatismo Múltiplo/complicações , Pâncreas/patologia , Injúria Renal Aguda/etiologia , Animais , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/lesões , Pâncreas/metabolismo
8.
Adv Sci (Weinh) ; 8(24): e2102381, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713625

RESUMO

Trauma is the leading cause of death in individuals under 44 years of age. Thorax trauma (TxT) is strongly associated with trauma-related death, an unbalanced innate immune response, sepsis, acute respiratory distress syndrome, and multiple organ dysfunction. It is shown that different in vivo traumata, such as TxT or an in vitro polytrauma cytokine cocktail trigger secretion of small extracellular nanovesicles (sEVs) from endothelial cells with pro-inflammatory cargo. These sEVs transfer transcripts for ICAM-1, VCAM-1, E-selectin, and cytokines to systemically activate the endothelium, facilitate neutrophil-endothelium interactions, and destabilize barrier integrity. Inhibition of sEV-release after TxT in mice ameliorates local as well as systemic inflammation, neutrophil infiltration, and distant organ damage in kidneys (acute kidney injury, AKI). Vice versa, injection of TxT-plasma-sEVs into healthy animals is sufficient to trigger pulmonary and systemic inflammation as well as AKI. Accordingly, increased sEV concentrations and transfer of similar cargos are observed in polytrauma patients, suggesting a fundamental pathophysiological mechanism.


Assuntos
Células Endoteliais/imunologia , Vesículas Extracelulares/imunologia , Inflamação/imunologia , Inflamação/fisiopatologia , Traumatismo Múltiplo/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/fisiopatologia , Animais , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Vesículas Extracelulares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo Múltiplo/imunologia , Infiltração de Neutrófilos/fisiologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia , Sepse/etiologia , Sepse/imunologia , Sepse/fisiopatologia
9.
Sci Rep ; 11(1): 6665, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758228

RESUMO

Severe injuries are frequently accompanied by hemorrhagic shock and harbor an increased risk for complications. Local or systemic inflammation after trauma/hemorrhage may lead to a leaky intestinal epithelial barrier and subsequent translocation of gut microbiota, potentially worsening outcomes. To evaluate the extent with which trauma affects the gut microbiota composition, we performed a post hoc analysis of a murine model of polytrauma and hemorrhage. Four hours after injury, organs and plasma samples were collected, and the diversity and composition of the cecal microbiome were evaluated using 16S rRNA gene sequencing. Although cecal microbial alpha diversity and microbial community composition were not found to be different between experimental groups, norepinephrine support in shock animals resulted in increased alpha diversity, as indicated by higher numbers of distinct microbial features. We observed that the concentrations of proinflammatory mediators in plasma and intestinal tissue were associated with measures of microbial alpha and beta diversity and the presence of specific microbial drivers of inflammation, suggesting that the composition of the gut microbiome at the time of trauma, or shortly after trauma exposure, may play an important role in determining physiological outcomes. In conclusion, we found associations between measures of gut microbial alpha and beta diversity and the severity of systemic and local gut inflammation. Furthermore, our data suggest that four hours following injury is too early for development of global changes in the alpha diversity or community composition of the intestinal microbiome. Future investigations with increased temporal-spatial resolution are needed in order to fully elucidate the effects of trauma and shock on the gut microbiome, biological signatures of inflammation, and proximal and distal outcomes.


Assuntos
Biomarcadores , Microbioma Gastrointestinal , Inflamação/etiologia , Inflamação/metabolismo , Traumatismo Múltiplo/complicações , Choque/complicações , Animais , Biodiversidade , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Inflamação/diagnóstico , Masculino , Metagenômica , Camundongos , Traumatismo Múltiplo/etiologia , RNA Ribossômico 16S , Curva ROC , Choque/etiologia , Aprendizado de Máquina Supervisionado
10.
Mediators Inflamm ; 2021: 6654318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574730

RESUMO

The immune response following trauma represents a major driving force of organ dysfunction and poor outcome. Therefore, we investigated the influence of an additional hemorrhagic shock (HS) on the early posttraumatic immune dysbalance in the whole population of blood leukocytes. A well-established murine polytrauma (PT) model with or without an additional pressure-controlled HS (mean arterial pressure of 30 mmHg (±5 mmHg) for 60 mins, afterwards fluid resuscitation with balanced electrolyte solution four times the volume of blood drawn) was used. C57BL/6 mice were randomized into a control, PT, and PT + HS group with three animals in each group. Four hours after trauma, corresponding to three hours after induction of hemorrhage, RNA was isolated from all peripheral blood leukocytes, and a microarray analysis was performed. Enrichment analysis was conducted on selected genes strongly modulated by the HS. After additional HS in PT mice, the gene expression of pathways related to the innate immunity, such as IL-6 production, neutrophil chemotaxis, cell adhesion, and toll-like receptor signaling was upregulated, whereas pathways of the adaptive immune system, such as B- and T-cell activation as well as the MHC class II protein complex, were downregulated. These results demonstrate that an additional HS plays an important role in the immune dysregulation early after PT by shifting the balance to increased innate and reduced adaptive immune responses.


Assuntos
Leucócitos/metabolismo , Choque Hemorrágico/metabolismo , Transcriptoma , Imunidade Adaptativa , Animais , Linfócitos B/citologia , Adesão Celular , Quimiotaxia , Hemorragia , Sistema Imunitário , Imunidade Inata , Interleucina-6/metabolismo , Leucócitos/citologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Traumatismo por Reperfusão , Linfócitos T/citologia , Regulação para Cima , Ferimentos e Lesões
11.
Sci Rep ; 11(1): 2158, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495506

RESUMO

Singular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


Assuntos
Complemento C5a/metabolismo , Inflamação/patologia , Pulmão/patologia , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Choque Hemorrágico/complicações , Choque Hemorrágico/metabolismo , Adulto , Animais , Aptâmeros de Peptídeos/farmacologia , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Capilares/patologia , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Alvéolos Pulmonares/patologia , Receptor da Anafilatoxina C5a/deficiência
12.
Front Immunol ; 11: 584514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101314

RESUMO

Physical trauma can be considered an unrecognized "pandemic" because it can occur anywhere and affect anyone and represents a global burden. Following severe tissue trauma, patients frequently develop acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) despite modern surgical and intensive care concepts. The underlying complex pathophysiology of life-threatening ALI/ARDS has been intensively studied in experimental and clinical settings. However, currently, the coronavirus family has become the focus of ALI/ARDS research because it represents an emerging global public health threat. The clinical presentation of the infection is highly heterogeneous, varying from a lack of symptoms to multiple organ dysfunction and mortality. In a particular subset of patients, the primary infection progresses rapidly to ALI and ARDS. The pathophysiological mechanisms triggering and driving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ALI/ARDS are still poorly understood. Although it is also generally unknown whether insights from trauma-induced ARDS may be readily translated to SARS-CoV-2-associated ARDS, it was still recommended to treat coronavirus-positive patients with ALI/ARDS with standard protocols for ALI/ARDS. However, this strategy was questioned by clinical scientists, because it was documented that some severely hypoxic SARS-CoV-2-infected patients exhibited a normal respiratory system compliance, a phenomenon rarely observed in ARDS patients with another underlying etiology. Therefore, coronavirus-induced ARDS was defined as a specific ARDS phenotype, which accordingly requires an adjusted therapeutic approach. These suggestions reflect previous attempts of classifying ARDS into different phenotypes that might overall facilitate ARDS diagnosis and treatment. Based on the clinical data from ARDS patients, two major phenotypes have been proposed: hyper- and hypo-inflammatory. Here, we provide a comparative review of the pathophysiological pathway of trauma-/hemorrhagic shock-induced ARDS and coronavirus-induced ARDS, with an emphasis on the crucial key points in the pathogenesis of both these ARDS forms. Therefore, the manifold available data on trauma-/hemorrhagic shock-induced ARDS may help to better understand coronavirus-induced ARDS.


Assuntos
Lesão Pulmonar Aguda/patologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Síndrome Respiratória Aguda Grave/patologia , Trombose/patologia , Lesão Pulmonar Aguda/virologia , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Citocinas/sangue , Humanos , Imunidade Inata/imunologia , Inflamação/patologia , Inflamação/virologia , Pulmão/patologia , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/virologia , Trombose/virologia
13.
Front Immunol ; 11: 2081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983160

RESUMO

Trauma represents a major socioeconomic burden worldwide. After a severe injury, hemorrhagic shock (HS) as a frequent concomitant aspect is a central driver of systemic inflammation and organ damage. The kidney is often strongly affected by traumatic-HS, and acute kidney injury (AKI) poses the patient at great risk for adverse outcome. Recently, thirty-eight-negative kinase 1 (TNK1) was proposed to play a detrimental role in organ damage after trauma/HS. Therefore, we aimed to assess the role of TNK1 in HS-induced kidney injury in a murine and a post hoc analysis of a non-human primate model of HS comparable to the clinical situation. Mice and non-human primates underwent resuscitated HS at 30 mmHg for 60 min. 5 h after the induction of shock, animals were assessed for systemic inflammation and TNK1 expression in the kidney. In vitro, murine distal convoluted tubule cells were stimulated with inflammatory mediators to gain mechanistic insights into the role of TNK1 in kidney dysfunction. In a translational approach, we investigated blood drawn from either healthy volunteers or severely injured patients at different time points after trauma (from arrival at the emergency room and at fixed time intervals until 10 days post injury; identifier: NCT02682550, https://clinicaltrials.gov/ct2/show/NCT02682550). A pronounced inflammatory response, as seen by increased IL-6 plasma levels as well as early signs of AKI, were observed in mice, non-human primates, and humans after trauma/HS. TNK1 was found in the plasma early after trauma-HS in trauma patients. Renal TNK1 expression was significantly increased in mice and non-human primates after HS, and these effects with concomitant induction of apoptosis were blocked by therapeutic inhibition of complement C3 activation in non-human primates. Mechanistically, in vitro data suggested that IL-6 rather than C3 cleavage products induced upregulation of TNK1 and impaired barrier function in renal epithelial cells. In conclusion, these data indicate that C3 inhibition in vivo may inhibit an excessive inflammatory response and mediator release, thereby indirectly neutralizing TNK1 as a potent driver of organ damage. In future studies, we will address the therapeutic potential of direct TNK1 inhibition in the context of severe tissue trauma with different degrees of additional HS.


Assuntos
Proteínas Fetais/metabolismo , Proteínas Tirosina Quinases/metabolismo , Choque Hemorrágico/metabolismo , Ferimentos e Lesões/metabolismo , Injúria Renal Aguda , Animais , Células Cultivadas , Complemento C3/metabolismo , Proteínas Fetais/genética , Voluntários Saudáveis , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Primatas , Proteínas Tirosina Quinases/genética
15.
J Transl Med ; 17(1): 305, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488164

RESUMO

Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40-50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R's criteria (Replacement, Reduction and Refinement), established by Russell and Burch in 'The Principles of Human Experimental Technique' (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.


Assuntos
Ferimentos e Lesões/patologia , Animais , Modelos Animais de Doenças , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Ratos , Ferimentos e Lesões/terapia
16.
Brain Behav Immun ; 81: 228-246, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207335

RESUMO

Traumatic brain injury (TBI) and ethanol intoxication (EI) frequently coincide, particularly in young subjects. However, the mechanisms of their interaction remain poorly understood. Among other pathogenic pathways, TBI induces glial activation and neuroinflammation in the hippocampus, resulting in acute and chronic hippocampal dysfunction. In this regard, we investigated the role of EI affecting these responses unfolding after TBI. We used a blunt, weight-drop approach to model TBI in mice. Male mice were pre-administered with ethanol or vehicle to simulate EI. The neuroinflammatory response in the hippocampus was assessed by monitoring the expression levels of >20 cytokines, the phosphorylation status of transcription factors and the phenotype of microglia and astrocytes. We used AS1517499, a brain-permeable STAT6 inhibitor, to elucidate the role of this pathway in the EI/TBI interaction. We showed that TBI causes the elevation of IL-33, IL-1ß, IL-38, TNF-α, IFN-α, IL-19 in the hippocampus at 3 h time point and concomitant EI results in the dose-dependent downregulation of IL-33, IL-1ß, IL-38, TNF-α and IL-19 (but not of IFN-α) and in the selective upregulation of IL-13 and IL-12. EI is associated with the phosphorylation of STAT6 and the transcription of STAT6-controlled genes. Moreover, ethanol-induced STAT6 phosphorylation and transcriptional activation can be recapitulated in vitro by concomitant exposure of neurons to ethanol, depolarization and inflammatory stimuli (simulating the acute trauma). Acute STAT6 inhibition prevents the effects of EI on IL-33 and TNF-α, but not on IL-13 and negates acute EI beneficial effects on TBI-associated neurological impairment. Additionally, EI is associated with reduced microglial activation and astrogliosis as well as preserved synaptic density and baseline neuronal activity 7 days after TBI and all these effects are prevented by acute administration of the STAT6 inhibitor concomitant to EI. EI concomitant to TBI exerts significant immunomodulatory effects on cytokine induction and microglial activation, largely through the activation of STAT6 pathway, ultimately with beneficial outcomes.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Etanol/farmacologia , Fator de Transcrição STAT6/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Microglia/metabolismo , Microglia/patologia , Neuroimunomodulação/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fator de Transcrição STAT6/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
17.
J Immunol ; 202(7): 2082-2094, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745459

RESUMO

The plasma proteins Factor H (FH) and its alternate splice variant FH-like protein 1 (FHL-1) are the major regulators of the complement alternative pathway. The indiscriminate nature of alternative pathway activation necessitates the regulators to be host selective, but the underlying principles of selectivity remained largely elusive. By analyzing human FH and FHL-1 for protection of different host and foreign cells (rabbit and yeast), we uncovered a 2-fold discriminatory mechanism of FH in favor of self: relative to FHL-1, FH exhibits a regulatory benefit on self but importantly, also, a regulatory penalty on nonself surfaces, yielding a selectivity factor of ∼2.4 for sialylated host surfaces. We further show that FHL-1 possesses higher regulatory activity than known but is relatively unselective. The reason for this unexpected high activity of FHL-1 is the observation that the complement regulatory site in FH exceeds the established first four domains. Affinity for C3b, cofactor and decay-accelerating activities, and serum assays demonstrate that the regulatory site extends domains 1-4 and includes domains 5-7. But unlike FH, FHL-1 exhibits a fast plasma clearance in mice, occurs sparsely in human plasma (at one fortieth of the FH concentration), and resists deregulation by FH-related proteins. These physiological differences and its late phylogenetic occurrence argue that FHL-1 is crucial for local rather than systemic compartments. In conclusion, we demonstrate a 2-fold discriminatory power of FH to promote selectivity for self over foreign and show that FHL-1 is more active than known but specialized for regulation on local tissues.


Assuntos
Via Alternativa do Complemento/imunologia , Tolerância a Antígenos Próprios/imunologia , Animais , Ativação do Complemento/imunologia , Fator H do Complemento/imunologia , Humanos
18.
Cereb Cortex ; 29(6): 2701-2715, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982364

RESUMO

Excessive excitation has been hypothesized to subsume a significant part of the acute damage occurring after traumatic brain injury (TBI). However, reduced neuronal excitability, loss of neuronal firing, and a disturbed excitation/inhibition balance have been detected. Parvalbumin (PV) interneurons are major regulators of perisomatic inhibition, principal neurons firing, and overall cortical excitability. However, their role in acute TBI pathogenic cascades is unclear. We exploited the chemogenetic Pharmacologically Selective Activation Module and Pharmacologically Selective Effector Module control of PV-Cre+ neurons and the Designer Receptors Exclusively Activated by Designer Drug (DREADD) control of principal neurons in a blunt model of TBI to explore the role of inhibition in shaping neuronal vulnerability to TBI. We demonstrated that inactivation of PV interneurons at the instance or soon after trauma enhances survival of principal neurons and reduces gliosis at 7 dpi whereas, activation of PV interneurons decreased neuronal survival. The protective effect of PV inactivation was suppressed by expressing the nuclear calcium buffer PV-nuclear localisation sequence in principal neurons, implying an activity-dependent neuroprotective signal. In fact, protective effects were obtained by increasing the excitability of principal neurons directly using DREADDs. Thus, we show that sustaining neuronal excitation in the early phases of TBI may reduce neuronal vulnerability by increasing activity-dependent survival, while excess activation of perisomatic inhibition is detrimental to neuronal integrity.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Interneurônios/fisiologia , Animais , Camundongos , Neurônios/fisiologia , Parvalbuminas/metabolismo
19.
Shock ; 52(4): e45-e51, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30289852

RESUMO

Dysfunction of the gut-blood barrier plays an important role in many diseases, such as inflammatory bowel disease, hemorrhagic shock (HS), or burn injury. However, little is known about gut barrier dysfunction after hemodynamically instable polytrauma (PT). Therefore, we aimed to evaluate the effects of PT and HS on remote intestinal damage and barrier dysfunction, especially regarding the role of zonula occludens protein 1 (ZO-1) as an important tight junction protein.Male C57BL/6 mice were subjected to either PT (thorax trauma, closed head injury, soft tissue injury, and distal femoral fracture), 60 min of pressure-controlled HS (30 ±â€Š5 mmHg), or PT+HS, or sham procedures.Animals of all trauma groups showed an increase in abdominal girth and dilation of the intestine during the experimental period, which was largest in the PT+HS group. Increased blood-tissue permeability to albumin (assessed by Evans blue dye) was found in the HS group. Experimental groups showed a slight increase in plasma concentration of intestinal fatty acid binding protein and some intestinal damage was histologically detectable. Of note, PT+HS animals revealed significantly reduced expression of ZO-1 in intestinal epithelial cells. In an in-vitro model, stimulation of human colon epithelial cells with peptidoglycan, but not with lipopolysaccharide, resulted in elevated secretion of pro-inflammatory cytokines, reflecting inflammatory activity of the intestinal epithelium.Taken together, PT and HS lead to increased permeability of the gut-blood barrier. Bacterial components may lead to production of inflammatory and chemotactic mediators by gut epithelial cells, underlining the role of the gut as an immunologically active organ.


Assuntos
Enteropatias , Intestinos , Traumatismo Múltiplo , Choque Hemorrágico , Animais , Modelos Animais de Doenças , Enteropatias/metabolismo , Enteropatias/patologia , Intestinos/lesões , Intestinos/patologia , Camundongos , Traumatismo Múltiplo/metabolismo , Traumatismo Múltiplo/patologia , Permeabilidade , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia
20.
Front Physiol ; 9: 674, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922174

RESUMO

Injury to skeletal muscle affects millions of people worldwide. The underlying regenerative process however, is a very complex mechanism, time-wise highly coordinated, and subdivided in an initial inflammatory, a regenerative and a remodeling phase. Muscle regeneration can be impaired by several factors, among them diet-induced obesity (DIO). In order to evaluate if obesity negatively affects healing processes after trauma, we utilized a blunt injury approach to damage the extensor iliotibialis anticus muscle on the left hind limb of obese and normal weight C57BL/6J without showing any significant differences in force input between normal weight and obese mice. Magnetic resonance imaging (MRI) of the injury and regeneration process revealed edema formation and hemorrhage exudate in muscle tissue of normal weight and obese mice. In addition, morphological analysis of physiological changes revealed tissue necrosis, immune cell infiltration, extracellular matrix (ECM) remodeling, and fibrosis formation in the damaged muscle tissue. Regeneration was delayed in muscles of obese mice, with a higher incidence of fibrosis formation due to hampered expression levels of genes involved in ECM organization. Furthermore, a detailed molecular fingerprint in different stages of muscle regeneration underlined a delay or even lack of a regenerative response to injury in obese mice. A time-lapse heatmap determined 81 differentially expressed genes (DEG) with at least three hits in our model at all-time points, suggesting key candidates with a high impact on muscle regeneration. Pathway analysis of the DEG revealed five pathways with a high confidence level: myeloid leukocyte migration, regulation of tumor necrosis factor production, CD4-positive, alpha-beta T cell differentiation, ECM organization, and toll-like receptor (TLR) signaling. Moreover, changes in complement-, Wnt-, and satellite cell-related genes were found to be impaired in obese animals after trauma. Furthermore, histological satellite cell evaluation showed lower satellite cell numbers in the obese model upon injury. Ankrd1, C3ar1, Ccl8, Mpeg1, and Myog expression levels were also verified by qPCR. In summary, increased fibrosis formation, the reduction of Pax7+ satellite cells as well as specific changes in gene expression and signaling pathways could explain the delay of tissue regeneration in obese mice post trauma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...