Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Model Earth Syst ; 12(10): e2020MS002246, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33282116

RESUMO

The need for high-precision calculations with 64-bit or 32-bit floating-point arithmetic for weather and climate models is questioned. Lower-precision numbers can accelerate simulations and are increasingly supported by modern computing hardware. This paper investigates the potential of 16-bit arithmetic when applied within a shallow water model that serves as a medium complexity weather or climate application. There are several 16-bit number formats that can potentially be used (IEEE half precision, BFloat16, posits, integer, and fixed-point). It is evident that a simple change to 16-bit arithmetic will not be possible for complex weather and climate applications as it will degrade model results by intolerable rounding errors that cause a stalling of model dynamics or model instabilities. However, if the posit number format is used as an alternative to the standard floating-point numbers, the model degradation can be significantly reduced. Furthermore, mitigation methods, such as rescaling, reordering, and mixed precision, are available to make model simulations resilient against a precision reduction. If mitigation methods are applied, 16-bit floating-point arithmetic can be used successfully within the shallow water model. The results show the potential of 16-bit formats for at least parts of complex weather and climate models where rounding errors would be entirely masked by initial condition, model, or discretization error.

2.
Proc Math Phys Eng Sci ; 476(2236): 20190350, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32398925

RESUMO

An arbitrarily dense discretization of the Bloch sphere of complex Hilbert states is constructed, where points correspond to bit strings of fixed finite length. Number-theoretic properties of trigonometric functions (not part of the quantum-theoretic canon) are used to show that this constructive discretized representation incorporates many of the defining characteristics of quantum systems: completementarity, uncertainty relationships and (with a simple Cartesian product of discretized spheres) entanglement. Unlike Meyer's earlier discretization of the Bloch Sphere, there are no orthonormal triples, hence the Kocken-Specker theorem is not nullified. A physical interpretation of points on the discretized Bloch sphere is given in terms of ensembles of trajectories on a dynamically invariant fractal set in state space, where states of physical reality correspond to points on the invariant set. This deterministic construction provides a new way to understand the violation of the Bell inequality without violating statistical independence or factorization, where these conditions are defined solely from states on the invariant set. In this finite representation, there is an upper limit to the number of qubits that can be entangled, a property with potential experimental consequences.

3.
Philos Trans A Math Phys Eng Sci ; 378(2166): 20190058, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955679

RESUMO

The case is made for a much closer synergy between climate science, numerical analysis and computer science. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.

4.
J Geophys Res Atmos ; 124(23): 12726-12740, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31998573

RESUMO

Stochastic schemes, designed to represent unresolved subgrid-scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long-term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the "stochastically perturbed parametrization tendencies" (SPPT) scheme in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's nonlinear interaction with condensation.

5.
Entropy (Basel) ; 20(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33265446

RESUMO

A finite non-classical framework for qubit physics is described that challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the primacy of a fractal-like 'invariant set' geometry I U in cosmological state space, on which the universe evolves deterministically and causally, and from which space-time and the laws of physics in space-time are emergent. Consistent with the assumed primacy of I U , a non-Euclidean (and hence non-classical) metric g p is defined in cosmological state space. Here, p is a large but finite integer (whose inverse may reflect the weakness of gravity). Points that do not lie on I U are necessarily g p -distant from points that do. g p is related to the p-adic metric of number theory. Using number-theoretic properties of spherical triangles, the Clauser-Horne-Shimony-Holt (CHSH) inequality, whose violation would rule out local realism, is shown to be undefined in this framework. Moreover, the CHSH-like inequalities violated experimentally are shown to be g p -distant from the CHSH inequality. This result fails in the singular limit p = ∞ , at which g p is Euclidean and the corresponding model classical. Although Invariant Set Theory is deterministic and locally causal, it is not conspiratorial and does not compromise experimenter free will. The relationship between Invariant Set Theory, Bohmian Theory, The Cellular Automaton Interpretation of Quantum Theory and p-adic Quantum Theory is discussed.

6.
Proc Math Phys Eng Sci ; 472(2188): 20150772, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27274686

RESUMO

Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s.

7.
Philos Trans A Math Phys Eng Sci ; 373(2047)2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26124256

RESUMO

A locally causal hidden-variable theory of quantum physics need not be constrained by the Bell inequalities if this theory also partially violates the measurement independence condition. However, such violation can appear unphysical, implying implausible conspiratorial correlations between the hidden variables of particles being measured and earlier determinants of instrumental settings. A novel physically plausible explanation for such correlations is proposed, based on the hypothesis that states of physical reality lie precisely on a non-computational measure-zero dynamically invariant set in the state space of the universe: the Cosmological Invariant Set Postulate. To illustrate the relevance of the concept of a global invariant set, a simple analogy is considered where a massive object is propelled into a black hole depending on the decay of a radioactive atom. It is claimed that a locally causal hidden-variable theory constrained by the Cosmological Invariant Set Postulate can violate the Clauser-Horne-Shimony-Holt inequality without being conspiratorial, superdeterministic, fine-tuned or retrocausal, and the theory readily accommodates the classical compatibilist notion of (experimenter) free will.

8.
Geophys Res Lett ; 42(5): 1554-1559, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26074651

RESUMO

It has recently been argued that single-model seasonal forecast ensembles are overdispersive, implying that the real world is more predictable than indicated by estimates of so-called perfect model predictability, particularly over the North Atlantic. However, such estimates are based on relatively short forecast data sets comprising just 20 years of seasonal predictions. Here we study longer 40 year seasonal forecast data sets from multimodel seasonal forecast ensemble projects and show that sampling uncertainty due to the length of the hindcast periods is large. The skill of forecasting the North Atlantic Oscillation during winter varies within the 40 year data sets with high levels of skill found for some subperiods. It is demonstrated that while 20 year estimates of seasonal reliability can show evidence of overdispersive behavior, the 40 year estimates are more stable and show no evidence of overdispersion. Instead, the predominant feature on these longer time scales is underdispersion, particularly in the tropics. KEY POINTS: Predictions can appear overdispersive due to hindcast length sampling errorLonger hindcasts are more robust and underdispersive, especially in the tropicsTwenty hindcasts are an inadequate sample size to assess seasonal forecast skill.

9.
J Adv Model Earth Syst ; 7(3): 1393-1408, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27642499

RESUMO

Programmable hardware, in particular Field Programmable Gate Arrays (FPGAs), promises a significant increase in computational performance for simulations in geophysical fluid dynamics compared with CPUs of similar power consumption. FPGAs allow adjusting the representation of floating-point numbers to specific application needs. We analyze the performance-precision trade-off on FPGA hardware for the two-scale Lorenz '95 model. We scale the size of this toy model to that of a high-performance computing application in order to make meaningful performance tests. We identify the minimal level of precision at which changes in model results are not significant compared with a maximal precision version of the model and find that this level is very similar for cases where the model is integrated for very short or long intervals. It is therefore a useful approach to investigate model errors due to rounding errors for very short simulations (e.g., 50 time steps) to obtain a range for the level of precision that can be used in expensive long-term simulations. We also show that an approach to reduce precision with increasing forecast time, when model errors are already accumulated, is very promising. We show that a speed-up of 1.9 times is possible in comparison to FPGA simulations in single precision if precision is reduced with no strong change in model error. The single-precision FPGA setup shows a speed-up of 2.8 times in comparison to our model implementation on two 6-core CPUs for large model setups.

10.
Philos Trans A Math Phys Eng Sci ; 372(2018): 20130276, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24842031

RESUMO

Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz '96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models.

11.
Philos Trans A Math Phys Eng Sci ; 372(2018): 20130391, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24842038

RESUMO

This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.

12.
J R Soc Interface ; 11(96): 20131162, 2014 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-24789559

RESUMO

Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.


Assuntos
Clima , Previsões , Modelos Teóricos , Estações do Ano , Tempo (Meteorologia) , Atmosfera/análise , Tomada de Decisões , Europa (Continente) , Oceanos e Mares , Reprodutibilidade dos Testes
13.
Philos Trans A Math Phys Eng Sci ; 371(1991): 20110479, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23588046

RESUMO

Simple chaotic systems are useful tools for testing methods for use in numerical weather simulations owing to their transparency and computational cheapness. The Lorenz system was used here; the full system was defined as 'truth', whereas a truncated version was used as a testbed for parametrization schemes. Several stochastic parametrization schemes were investigated, including additive and multiplicative noise. The forecasts were started from perfect initial conditions, eliminating initial condition uncertainty. The stochastically generated ensembles were compared with perturbed parameter ensembles and deterministic schemes. The stochastic parametrizations showed an improvement in weather and climate forecasting skill over deterministic parametrizations. Including a temporal autocorrelation resulted in a significant improvement over white noise, challenging the standard idea that a parametrization should only represent sub-gridscale variability. The skill of the ensemble at representing model uncertainty was tested; the stochastic ensembles gave better estimates of model uncertainty than the perturbed parameter ensembles. The forecasting skill of the parametrizations was found to be linked to their ability to reproduce the climatology of the full model. This is important in a seamless prediction system, allowing the reliability of short-term forecasts to provide a quantitative constraint on the accuracy of climate predictions from the same system.

15.
Philos Trans A Math Phys Eng Sci ; 369(1956): 4681-4, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22042891
16.
Am J Physiol Regul Integr Comp Physiol ; 295(2): R633-41, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18525011

RESUMO

Mild physical activity performed immediately after a bout of intense exercise in fasting humans results in net glycogen breakdown in their slow oxidative (SO) muscle fibers and glycogen repletion in their fast twitch (FT) fibers. Because several animal species carry a low proportion of SO fibers, it is unclear whether they can also replenish glycogen in their FT fibers under these conditions. Given that most skeletal muscles in rats are poor in SO fibers (<5%), this issue was examined using groups of 24-h fasted Wistar rats (n=10) that swam for 3 min at high intensity with a 10% weight followed by either a 60-min rest (passive recovery, PR) or a 30-min swim with a 0.5% weight (active recovery, AR) preceding a 30-min rest. The 3-min sprint caused 61-79% glycogen fall across the muscles examined, but not in the soleus (SOL). Glycogen repletion during AR without food was similar to PR in the white gastrocnemius (WG), where glycogen increased by 71%, and less than PR in both the red and mixed gastrocnemius (RG, MG). Glycogen fell by 26% during AR in the SOL. Following AR, glycogen increased by 36%, 87%, and 37% in the SOL, RG, and MG, respectively, and this was accompanied by the sustained activation of glycogen synthase and inhibition of glycogen phosphorylase in the RG and MG. These results suggest that mammals with a low proportion of SO fibers can also replenish the glycogen stores of their FT fibers under extreme conditions combining physical activity and fasting.


Assuntos
Jejum/metabolismo , Glicogênio/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Esforço Físico/fisiologia , Animais , Glucose-6-Fosfato/metabolismo , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio Sintase/metabolismo , Ácido Láctico/metabolismo , Masculino , Fibras Musculares de Contração Rápida/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Oxirredução , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
17.
Philos Trans A Math Phys Eng Sci ; 366(1875): 2421-7, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18445565

RESUMO

Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.

18.
Philos Trans A Math Phys Eng Sci ; 366(1875): 2561-79, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18445570

RESUMO

The impact of a nonlinear dynamic cellular automaton (CA) model, as a representation of the partially stochastic aspects of unresolved scales in global climate models, is studied in the European Centre for Medium Range Weather Forecasts coupled ocean-atmosphere model. Two separate aspects are discussed: impact on the systematic error of the model, and impact on the skill of seasonal forecasts. Significant reductions of systematic error are found both in the tropics and in the extratropics. Such reductions can be understood in terms of the inherently nonlinear nature of climate, in particular how energy injected by the CA at the near-grid scale can backscatter nonlinearly to larger scales. In addition, significant improvements in the probabilistic skill of seasonal forecasts are found in terms of a number of different variables such as temperature, precipitation and sea-level pressure. Such increases in skill can be understood both in terms of the reduction of systematic error as mentioned above, and in terms of the impact on ensemble spread of the CA's representation of inherent model uncertainty.

19.
Philos Trans A Math Phys Eng Sci ; 365(1857): 2179-91, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17569651

RESUMO

Sensitivity experiments using a coupled model initialized from analysed atmospheric and oceanic observations are used to investigate the potential for interannual-to-decadal predictability. The potential for extending seasonal predictions to longer time scales is explored using the same coupled model configuration and initialization procedure as used for seasonal prediction. It is found that, despite model drift, climatic signals on interannual-to-decadal time scales appear to be detectable. Two climatic states have been chosen: one starting in 1965, i.e. ahead of a period of global cooling, and the other in 1994, ahead of a period of global warming. The impact of initial conditions and of the different levels of greenhouse gases are isolated in order to gain insights into the source of predictability.

20.
Nature ; 439(7076): 576-9, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16452977

RESUMO

The control of epidemic malaria is a priority for the international health community and specific targets for the early detection and effective control of epidemics have been agreed. Interannual climate variability is an important determinant of epidemics in parts of Africa where climate drives both mosquito vector dynamics and parasite development rates. Hence, skilful seasonal climate forecasts may provide early warning of changes of risk in epidemic-prone regions. Here we discuss the development of a system to forecast probabilities of anomalously high and low malaria incidence with dynamically based, seasonal-timescale, multi-model ensemble predictions of climate, using leading global coupled ocean-atmosphere climate models developed in Europe. This forecast system is successfully applied to the prediction of malaria risk in Botswana, where links between malaria and climate variability are well established, adding up to four months lead time over malaria warnings issued with observed precipitation and having a comparably high level of probabilistic prediction skill. In years in which the forecast probability distribution is different from that of climatology, malaria decision-makers can use this information for improved resource allocation.


Assuntos
Clima , Malária/epidemiologia , Modelos Biológicos , Estações do Ano , Animais , Botsuana/epidemiologia , Culicidae/fisiologia , Humanos , Incidência , Malária/parasitologia , Malária/prevenção & controle , Probabilidade , Chuva , Fatores de Risco , Temperatura , Fatores de Tempo , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA