Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 182701, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759192

RESUMO

The efficiency of the weak s process in low-metallicity rotating massive stars depends strongly on the rates of the competing ^{17}O(α,n)^{20}Ne and ^{17}O(α,γ)^{21}Ne reactions that determine the potency of the ^{16}O neutron poison. Their reaction rates are poorly known in the astrophysical energy range of interest for core helium burning in massive stars because of the lack of spectroscopic information (partial widths, spin parities) for the relevant states in the compound nucleus ^{21}Ne. In this Letter, we report on the first experimental determination of the α-particle spectroscopic factors and partial widths of these states using the ^{17}O(^{7}Li,t)^{21}Ne α-transfer reaction. With these the ^{17}O(α,n)^{20}Ne and ^{17}O(α,γ)^{21}Ne reaction rates were evaluated with uncertainties reduced by a factor more than 3 with respect to previous evaluations and the present ^{17}O(α,n)^{20}Ne reaction rate is more than 20 times larger. The present (α,n)/(α,γ) rate ratio favors neutron recycling and suggests an enhancement of the weak s process in the Zr-Nd region by more than 1.5 dex in metal-poor rotating massive stars.

2.
Radiat Prot Dosimetry ; 116(1-4 Pt 2): 605-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16604709

RESUMO

Gadolinium has been recently proposed, as neutron capture agent in NCT (Neutron Capture Therapy), due to both the nuclide high neutron capture cross section, and the remarkable selective uptake inside tumour tissue that Gd-loaded compounds, can provide. When a neutron external source is supplied, different Gd nuclear reactions, and the generated Auger electrons in particular, cause a high local energy deposition, which results in a tumour cell inactivation. Preliminary micro- as well as macrodosimetric Monte Carlo computational investigations show that the tumour-to-healthy tissue biological damage ratio is in close relation to the neutron beam energy spectrum. The results points out that the optimum neutron spectrum, to be used for Gd-NCT, seems to lie in the 1 to 10 keV energy range. In order to 'tailor' such spectra, an original, accelerator-driven, neutron source and spectrum shaping assembly for hospital-based Gd-NCT are presented and preliminary results are reported.


Assuntos
Neoplasias Encefálicas/radioterapia , Gadolínio/uso terapêutico , Modelos Biológicos , Terapia por Captura de Nêutron/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Doses de Radiação , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...