Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(12): 211592, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36483758

RESUMO

The coexistence of competing species is a long-lasting puzzle in evolutionary ecology research. Despite abundant experimental evidence showing that the opportunity for coexistence decreases as niche overlap increases between species, bacterial species and strains competing for the same resources are commonly found across diverse spatially heterogeneous habitats. We thus hypothesized that the spatial scale of competition may play a key role in determining bacterial coexistence, and interact with other mechanisms that promote coexistence, including a growth-motility trade-off. To test this hypothesis, we let two Pseudomonas putida strains compete at local and regional scales by inoculating them either in a mixed droplet or in separate droplets in the same Petri dish, respectively. We also created conditions that allow the bacterial strains to disperse across abiotic or fungal hyphae networks. We found that competition at the local scale led to competitive exclusion while regional competition promoted coexistence. When competing in the presence of dispersal networks, the growth-motility trade-off promoted coexistence only when the strains were inoculated in separate droplets. Our results provide a mechanism by which existing laboratory data suggesting competitive exclusion at a local scale is reconciled with the widespread coexistence of competing bacterial strains in complex natural environments with dispersal.

2.
Microbiol Resour Announc ; 11(9): e0018122, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35924938

RESUMO

Here, we report the complete genome sequences of the soil oxalotrophic bacterium Cupriavidus oxalaticus Ox1 and a derived mCherry-tagged strain. The genome size is approximately 6.69 Mb, with a GC content of 66.9%. The genome sequence of C. oxalaticus Ox1 contains a complete operon for the degradation and assimilation of oxalate.

3.
Front Med (Lausanne) ; 9: 832510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386908

RESUMO

Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.

4.
Commun Biol ; 4(1): 1168, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34621007

RESUMO

Knowledge of associations between fungal hosts and their bacterial associates has steadily grown in recent years as the number and diversity of examinations have increased, but current knowledge is predominantly limited to a small number of fungal taxa and bacterial partners. Here, we screened for potential bacterial associates in over 700 phylogenetically diverse fungal isolates, representing 366 genera, or a tenfold increase compared with previously examined fungal genera, including isolates from several previously unexplored phyla. Both a 16 S rDNA-based exploration of fungal isolates from four distinct culture collections spanning North America, South America and Europe, and a bioinformatic screen for bacterial-specific sequences within fungal genome sequencing projects, revealed that a surprisingly diverse array of bacterial associates are frequently found in otherwise axenic fungal cultures. We demonstrate that bacterial associations with diverse fungal hosts appear to be the rule, rather than the exception, and deserve increased consideration in microbiome studies and in examinations of microbial interactions.


Assuntos
Bactérias/isolamento & purificação , Fungos , Interações Microbianas , Microbiota , Biologia Computacional , DNA Bacteriano/análise , DNA Ribossômico/análise , Europa (Continente) , América do Norte , América do Sul
5.
FEMS Microbiol Ecol ; 97(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440006

RESUMO

Bacteria-fungi interactions (BFIs) are essential in ecosystem functioning. These interactions are modulated not only by local nutritional conditions but also by the physicochemical constraints and 3D structure of the environmental niche. In soils, the unsaturated and complex nature of the substrate restricts the dispersal and activity of bacteria. Under unsaturated conditions, some bacteria engage with filamentous fungi in an interaction (fungal highways) in which they use fungal hyphae to disperse. Based on a previous experimental device to enrich pairs of organisms engaging in this interaction in soils, we present here the design and validation of a modified version of this sampling system constructed using additive printing. The 3D printed devices were tested using a novel application in which a target fungus, the common coprophilous fungus Coprinopsis cinerea, was used as bait to recruit and identify bacterial partners using its mycelium for dispersal. Bacteria of the genera Pseudomonas, Sphingobacterium and Stenotrophomonas were highly enriched in association with C. cinerea. Developing and producing these new easy-to-use tools to investigate how bacteria overcome dispersal limitations in cooperation with fungi is important to unravel the mechanisms by which BFIs affect processes at an ecosystem scale in soils and other unsaturated environments.


Assuntos
Microbiologia do Solo , Solo , Agaricales , Bactérias/genética , Ecossistema , Fungos
6.
Adv Appl Microbiol ; 106: 49-77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798804

RESUMO

Oxalic acid is the most ubiquitous and common low molecular weight organic acid produced by living organisms. Oxalic acid is produced by fungi, bacteria, plants, and animals. The aim of this review is to give an overview of current knowledge about the microbial cycling of oxalic acid through ecosystems. Here we review the production and degradation of oxalic acid, as well as its implications in the metabolism for fungi, bacteria, plants, and animals. Indeed, fungi are well known producers of oxalic acid, while bacteria are considered oxalic acid consumers. However, this framework may need to be modified, because the ability of fungi to degrade oxalic acid and the ability of bacteria to produce it, have been poorly investigated. Finally, we will highlight the role of fungi and bacteria in oxalic acid cycling in soil, plant and animal ecosystems.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Ácido Oxálico/metabolismo , Animais , Bactérias/genética , Ecossistema , Fungos/genética , Plantas/metabolismo
7.
Adv Appl Microbiol ; 106: 79-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798805

RESUMO

The production of a highly specialized cell structure called a spore is a remarkable example of a survival strategy displayed by bacteria in response to challenging environmental conditions. The detailed analysis and description of the process of sporulation in selected model organisms have generated a solid background to understand the cellular processes leading to the formation of this specialized cell. However, much less is known regarding the ecology of spore-formers. This research gap needs to be filled as the feature of resistance has important implications not only on the survival of spore-formers and their ecology, but also on the use of spores for environmental prospection and biotechnological applications.


Assuntos
Bactérias/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biotecnologia , Ecologia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
8.
Int J Syst Evol Microbiol ; 66(8): 2944-2951, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27126386

RESUMO

A novel endospore-forming bacterium designated strain GSsed3T was isolated from deposits clogging aboveground filters from the geothermal power platform of Groß Schönebeck in northern Germany. The novel isolate was Gram-staining-positive, facultatively anaerobic, catalase-positive and oxidase-positive. Optimum growth occurred at 60 °C, 0.5 % (w/v) NaCl and pH 7-8. Analysis of the 16S rRNA gene sequence similarity indicated that strain GSsed3T belonged to the genus Anoxybacillus, and showed 99.8 % sequence similarity to Anoxybacillus rupiensis R270T, 98.2 % similarity to Anoxybacillus tepidamans GS5-97T, 97.9 % similarity to Anoxybacillus voinovskiensis TH13T, 97.7 % similarity to Anoxybacillus caldiproteolyticus DSM 15730T and 97.6 % similarity to Anoxybacillus amylolyticus MR3CT. DNA-DNA hybridization (DDH) indicated only 16 % relatedness to Anoxybacillus rupiensis DSM 17127T. Furthermore, DDH estimation based on genomes analysis indicated only 19.9 % overall nucleotide similarity to Anoxybacillus amylolyticus DSM 15939T. The major respiratory menaquinone was MK-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phosphoglycolipid and one unknown phospholipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. The peptidoglycan type was A1γ meso-Dpm-direct. The genomic DNA G+C content of the strain was 46.9 mol%. The phenotypic, genotypic and chemotaxonomic characterization indicated that strain GSsed3T differs from related species of the genus. Therefore, strain GSsed3T is considered to be a representative of a novel species of the genus Anoxybacillus, for which the name Anoxybacillus geothermalis sp. nov. is proposed. The type strain of Anoxybacillus geothermalis is GSsed3T (=CCOS808T =ATCC BAA2555T).


Assuntos
Anoxybacillus/classificação , Água Subterrânea/microbiologia , Filogenia , Anoxybacillus/genética , Anoxybacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Minerais , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Centrais Elétricas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...