Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Res Sq ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38558984

RESUMO

Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression that disrupts the balance between osteoclasts and osteoblasts, leading to bone lesions. Whether such reprogramming affects matrix-embedded osteocytes remains poorly understood. Here, we demonstrate that osteocytes in breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified osteocytes from mice with breast cancer bone metastasis enriched in senescence and SASP markers and pro-osteoclastogenic genes. Using multiplex in situ hybridization and AI-assisted analysis, we detected osteocytes with senescence-associated distension of satellites, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. In vitro and ex vivo organ cultures showed that breast cancer cells promote osteocyte senescence and enhance their osteoclastogenic potential. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that osteocytes undergo pathological reprogramming by breast cancer cells and identify osteocyte senescence as an initiating event triggering bone destruction in breast cancer metastases.

2.
Haematologica ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385272

RESUMO

Multiple myeloma (MM) remains incurable due to disease relapse and drug resistance. Notch signals from the tumor microenvironment (TME) confer chemoresistance, but the cellular and molecular mechanisms are not entirely understood. Using clinical and transcriptomic datasets, we found that NOTCH3 is upregulated in CD138+ cells from newly diagnosed MM (NDMM) patients compared to healthy individuals and increased in progression/relapsed MM (PRMM) patients. Further, NDMM patients with high NOTCH3 expression exhibited worse responses to Bortezomib (BOR)-based therapies. Cells of the TME, including osteocytes, upregulated NOTCH3 in MM cells and protected them from apoptosis induced by BOR. NOTCH3 activation (NOTCH3OE) in MM cells decreased BOR anti-MM efficacy and its ability to improve survival in in vivo myeloma models. Molecular analyses revealed that NDMM and PRMM patients with high NOTCH3 exhibit CXCL12 upregulation. TME cells upregulated CXCL12 and activated the CXCR4 pathway in MM cells in a NOTCH3-dependent manner. Moreover, genetic or pharmacologic inhibition of CXCL12 in NOTCH3OE MM cells restored sensitivity to BOR regimes in vitro and in human bones bearing NOTCH3OE MM tumors cultured ex vivo. Our clinical and preclinical data unravel a novel NOTCH3-CXCL12 pro-survival signaling axis in the TME and suggest that osteocytes transmit chemoresistance signals to MM cells.

5.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37581932

RESUMO

Denosumab is an anti-RANKL Ab that potently suppresses bone resorption, increases bone mass, and reduces fracture risk. Discontinuation of denosumab causes rapid rebound bone resorption and bone loss, but the molecular mechanisms are unclear. We generated humanized RANKL mice and treated them with denosumab to examine the cellular and molecular conditions associated with rebound resorption. Denosumab potently suppressed both osteoclast and osteoblast numbers in cancellous bone in humanized RANKL mice. The decrease in osteoclast number was not associated with changes in osteoclast progenitors in bone marrow. Long-term, but not short-term, denosumab administration reduced osteoprotegerin (OPG) mRNA in bone. Localization of OPG expression revealed that OPG mRNA is produced by a subpopulation of osteocytes. Long-term denosumab administration reduced osteocyte OPG mRNA, suggesting that OPG expression declines as osteocytes age. Consistent with this, osteocyte expression of OPG was more prevalent near the surface of cortical bone in humans and mice. These results suggest that new osteocytes are an important source of OPG in remodeling bone and that suppression of remodeling reduces OPG abundance by reducing new osteocyte formation. The lack of new osteocytes and the OPG they produce may contribute to rebound resorption after denosumab discontinuation.


Assuntos
Reabsorção Óssea , Osteócitos , Humanos , Camundongos , Animais , Osteócitos/metabolismo , Denosumab/farmacologia , Denosumab/uso terapêutico , Denosumab/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo
6.
Front Neurosci ; 17: 1172805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304036

RESUMO

Loss and gain of functions mutations in the X-linked MECP2 (methyl-CpG-binding protein 2) gene are responsible for a set of generally severe neurological disorders that can affect both genders. In particular, Mecp2 deficiency is mainly associated with Rett syndrome (RTT) in girls, while duplication of the MECP2 gene leads, mainly in boys, to the MECP2 duplication syndrome (MDS). No cure is currently available for MECP2 related disorders. However, several studies have reported that by re-expressing the wild-type gene is possible to restore defective phenotypes of Mecp2 null animals. This proof of principle endorsed many laboratories to search for novel therapeutic strategies to cure RTT. Besides pharmacological approaches aimed at modulating MeCP2-downstream pathways, genetic targeting of MECP2 or its transcript have been largely proposed. Remarkably, two studies focused on augmentative gene therapy were recently approved for clinical trials. Both use molecular strategies to well-control gene dosage. Notably, the recent development of genome editing technologies has opened an alternative way to specifically target MECP2 without altering its physiological levels. Other attractive approaches exclusively applicable for nonsense mutations are the translational read-through (TR) and t-RNA suppressor therapy. Reactivation of the MECP2 locus on the silent X chromosome represents another valid choice for the disease. In this article, we intend to review the most recent genetic interventions for the treatment of RTT, describing the current state of the art, and the related advantages and concerns. We will also discuss the possible application of other advanced therapies, based on molecular delivery through nanoparticles, already proposed for other neurological disorders but still not tested in RTT.

7.
Bone ; 170: 116702, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773885

RESUMO

The scavenger receptor class B member 1 (SR-B1 or Scarb1) is a glycosylated cell surface receptor for high density lipoproteins (HDL), oxidized low density lipoproteins (OxLDL), and phosphocholine-containing oxidized phospholipids (PC-OxPLs). Scarb1 is expressed in macrophages and has been shown to have both pro- and anti-atherogenic properties. It has been reported that global deletion of Scarb1 in mice leads to either high or low bone mass and that PC-OxPLs decrease osteoblastogenesis and increase osteoclastogenesis. PC-OxPLs decrease bone mass in 6-month-old mice and are critical pathogenetic factors in the bone loss caused by high fat diet or aging. We have investigated here whether Scarb1 expression in myeloid cells affects bone mass and whether PC-OxPLs exert their anti-osteogenic effects via activation of Scarb1 in macrophages. To this end, we generated mice with deletion of Scarb1 in LysM-Cre expressing cells and found that lack of Scarb1 did not affect bone mass in vivo. These results indicate that Scarb1 expression in cells of the myeloid/osteoclast lineage does not contribute to bone homeostasis. Based on this evidence, and earlier studies of ours showing that Scarb1 expression in osteoblasts does not affect bone mass, we conclude that Scarb1 is not an important mediator of the adverse effects on PC-OxPLs in osteoclasts or osteoblasts in 6-month-old mice.


Assuntos
Densidade Óssea , Osso e Ossos , Animais , Camundongos , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Osso e Ossos/metabolismo , Osteoclastos/metabolismo , Osteogênese
8.
PLoS One ; 17(3): e0265893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349600

RESUMO

The scavenger receptor class B member 1 (SR-B1 or Scarb1) is a cell surface receptor for high density lipoproteins. It also binds oxidized low density lipoproteins and phosphocholine-containing oxidized phospholipids (PC-OxPL), which adversely affect bone homeostasis. Overexpression of a single chain form of the antigen-binding domain of E06 IgM-a natural antibody that recognizes PC-OxPL-increases trabecular and cortical bone mass in female and male mice by stimulating bone formation. We have previously reported that Scarb1 is the most abundant scavenger receptor for PC-OxPL in calvaria-derived osteoblastic cells. Additionally, bone marrow- and calvaria-derived osteoblasts from Scarb1 knockout mice (Scarb1 KO) are protected from the pro-apoptotic and anti-differentiating effects of OxPL. Previous skeletal analysis of Scarb1 KO mice has produced contradictory results, with some studies reporting elevated bone mass but another study reporting low bone mass. To clarify the role of Scarb1 in osteoblasts, we deleted Scarb1 specifically in cells of the osteoblast lineage using Osx1-Cre transgenic mice. We observed no difference in bone mineral density measured by DXA in either female or male Osx1-Cre;Scarb1fl/fl mice compared to wild type (WT), Osx1-Cre, or Scarb1fl/fl littermate controls. Additionally, microCT analysis of 6-month-old females and 7-month-old males did not detect any difference in trabecular or cortical bone mass between genotypes. These results indicate that expression of Scarb1 in cells of the osteoblast lineage does not play an important role in bone homeostasis and, therefore, it is not essential for the effects of PC-OxPL on these cells.


Assuntos
Densidade Óssea , Osteoblastos , Receptores Depuradores Classe B , Animais , Osso e Ossos/diagnóstico por imagem , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese , Receptores Depuradores/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
9.
Aging Cell ; 20(8): e13442, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34278710

RESUMO

Oxidized phospholipids (OxPLs) are pro-inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single-chain variable fragment (scFv) of the antigen-binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. OxPLs increase with age, while natural antibodies decrease. Age-related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age-related bone loss. We show here that transgenic expression of E06-scFv attenuated the age-associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06-scFv attenuated the age-associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA-seq analysis showed that E06-scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age-related bone loss, E06-scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age-associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non-alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06-scFv in mice.


Assuntos
Envelhecimento/patologia , Doenças Ósseas Metabólicas/fisiopatologia , Fosfolipídeos/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
10.
J Bone Miner Res ; 36(1): 170-185, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32990984

RESUMO

Oxidized phospholipids containing phosphocholine (OxPL) are pro-inflammatory lipid peroxidation products that bind to scavenger receptors (SRs), such as Scarb1, and toll-like receptors (TLRs). Excessive OxPL, as found in oxidized low-density lipoprotein (OxLDL), overwhelm these defense mechanisms and become pathogenic in atherosclerosis, nonalcoholic steatohepatitis (NASH), and osteoporosis. We previously reported that the innate IgM natural antibody E06 binds to OxPL and neutralizes their deleterious effects; expression of the single-chain (scFv) form of the antigen-binding domain of E06 (E06-scFv) as a transgene increases trabecular bone in male mice. We show herein that E06-scFv increases trabecular and cortical bone in female and male mice by increasing bone formation and decreasing osteoblast apoptosis in vivo. Homozygous E06-scFv mice have higher bone mass than hemizygous, showing a dose effect of the transgene. To investigate how OxPL restrain bone formation under physiologic conditions, we measured the levels of SRs and TLRs that bind OxPL. We found that osteoblastic cells primarily express Scarb1. Moreover, OxLDL-induced apoptosis and reduced differentiation were prevented in bone marrow-derived or calvaria-derived osteoblasts from Scarb1 knockout mice. Because Scarb1-deficient mice are reported to have high bone mass, our results suggest that E06 may promote bone anabolism in healthy young mice, at least in part, by neutralizing OxPL, which in turn promote Scarb1-mediated apoptosis of osteoblasts or osteoblast precursors. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..


Assuntos
Osteogênese , Fosfolipídeos , Animais , Anticorpos Neutralizantes , Feminino , Masculino , Camundongos , Camundongos Knockout , Oxirredução
11.
Cell Rep ; 32(10): 108052, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905775

RESUMO

Osteoprotegerin (OPG) inhibits the ability of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) to stimulate the differentiation, activity, and survival of bone-resorbing osteoclasts. Genetic studies in mice show that osteocytes are an important source of RANKL, but the cellular sources of OPG are unclear. We use conditional deletion of Tnfrsf11b, which encodes OPG, from different cell populations to identify functionally relevant sources of OPG in mice. Deletion from B lymphocytes and osteocytes, two cell types commonly thought to supply OPG, has little or no impact on bone mass. By contrast, deletion of Tnfrsf11b from osteoblasts increases bone resorption and reduces bone mass to an extent similar to germline deletion, demonstrating that osteoblasts are an essential source of OPG. These results suggest that, in addition to producing new bone matrix, osteoblasts also play an active role in terminating the resorption phase of the bone remodeling cycle by suppressing RANKL activity.


Assuntos
Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoprotegerina/metabolismo , Animais , Remodelação Óssea , Diferenciação Celular , Humanos , Camundongos
12.
EMBO Mol Med ; 12(6): e10270, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383329

RESUMO

Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.


Assuntos
Síndrome de Rett , Animais , Encéfalo/metabolismo , Proteínas Hedgehog , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutação , Síndrome de Rett/genética
13.
Mol Genet Genomic Med ; 7(12): e859, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568712

RESUMO

BACKGROUND: One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. OBJECTIVES: To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. METHODS: BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. RESULTS: The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. CONCLUSIONS: Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long-held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Distribuição Tecidual
14.
Mol Neurobiol ; 56(7): 4838-4854, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30402709

RESUMO

MeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain. As most models of Mecp2, the Mecp2Y120D mouse develops a severe Rett-like phenotype. This mutation alters the interaction of the protein with chromatin, but surprisingly, it also impairs its association with corepressors independently on the involved interacting domains. These features, which become overt mainly in the mature brain, cause a more accessible and transcriptionally active chromatin structure; conversely, in the Mecp2-null brain, we find a less accessible and transcriptionally inactive chromatin. By demonstrating that different MECP2 mutations can produce concordant neurological phenotypes but discordant molecular features, we highlight the importance of considering personalized approaches for the treatment of Rett syndrome.


Assuntos
Comportamento Animal , Técnicas de Introdução de Genes , Proteína 2 de Ligação a Metil-CpG/metabolismo , Medicina de Precisão , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatina/metabolismo , Feminino , Humanos , Longevidade , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Neurônios/metabolismo , Fenótipo , Síndrome de Rett
15.
Nat Cell Biol ; 20(12): 1370-1377, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397314

RESUMO

Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment1-3. Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system4-6, but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease)7. ER-to-Golgi trafficking of CLN8 requires interaction with the COPII and COPI machineries via specific export and retrieval signals localized in the cytosolic carboxy terminus of CLN8. CLN8 deficiency leads to depletion of soluble enzymes in the lysosome, thus impairing lysosome biogenesis. Binding to lysosomal enzymes requires the second luminal loop of CLN8 and is abolished by some disease-causing mutations within this region. Our data establish an unanticipated example of an ER receptor serving the biogenesis of an organelle and indicate that impaired transport of lysosomal enzymes underlies Batten disease caused by mutations in CLN8.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células HeLa , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Ligação Proteica , Transporte Proteico/genética
16.
Nat Commun ; 9(1): 4351, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341294

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell survival and autophagy, and its activity is regulated by amino acid availability. Rag GTPase-GATOR1 interactions inhibit mTORC1 in the absence of amino acids, and GATOR1 release and activation of RagA/B promotes mTORC1 activity in the presence of amino acids. However, the factors that play a role in Rag-GATOR1 interaction are still poorly characterized. Here, we show that the tyrosine kinase Src is crucial for amino acid-mediated activation of mTORC1. Src acts upstream of the Rag GTPases by promoting dissociation of GATOR1 from the Rags, thereby determining mTORC1 recruitment and activation at the lysosomal surface. Accordingly, amino acid-mediated regulation of Src/mTORC1 modulates autophagy and cell size expansion. Finally, Src hyperactivation overrides amino acid signaling in the activation of mTORC1. These results shed light on the mechanisms underlying pathway dysregulation in many cancer types.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Quinases da Família src/fisiologia , Autofagia , Ciclo Celular , Transdução de Sinais , Quinases da Família src/metabolismo
17.
Physiol Meas ; 39(1): 014001, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29176075

RESUMO

OBJECTIVE: The purpose of the study was the assessment of activation patterns of the extensor digitorum brevis (EDB) muscle in healthy children, during walking at self-selected speed and cadence. APPROACH: To this end, statistical gait analysis was performed on surface electromyographic (sEMG) signals of the EDB, in a large number (hundreds) of strides per subject. sEMG data from the tibialis anterior (TA) and gastrocnemius lateralis (GL) were also investigated for comparative purposes. MAIN RESULTS: Results from 23 healthy children showed a large variability in the number of muscle activations, occurrence frequency, and onset-offset instants across considered strides. The assessment of different modalities of muscle activation allowed the identification of a single activity pattern, common to all the modalities and we were able to characterize the behavior of the EDB during the gait of healthy children. The pattern of EDB activity centered in two main regions of the gait cycle: in the second half of the stance phase (detected in 100% of subjects) and in the final swing phase (50%). Comparison with the TA and GL regions of activity suggested that the EDB and TA worked mainly as antagonist muscles for the ankle joint, while the EDB and GL did not oppose each other in action, but acted in synergy for the control of the ankle joint during walking. SIGNIFICANCE: The 'Normality' pattern for the EDB activity reported here represents the first attempt to develop a reference for dynamic sEMG of the EDB in healthy children, enabling us to include the physiological variability of the phenomenon. Present results could be useful for discriminating physiological and pathological behavior in children and for deepening the maturation of the gait.


Assuntos
Eletromiografia , Voluntários Saudáveis , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Criança , Feminino , Pé/fisiologia , Humanos , Masculino , Processamento de Sinais Assistido por Computador
20.
Nat Commun ; 8: 14338, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165011

RESUMO

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Trealose/farmacologia , Animais , Astrócitos , Autofagia/fisiologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Fibroblastos , Técnicas de Silenciamento de Genes , Células HeLa , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trealose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...