Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183444

RESUMO

As neurons age, they show a decrease in their ability to degrade proteins and membranes. Because undegraded material is a source of toxic products, defects in degradation are associated with reduced cell function and survival. However, there are very few dead neurons in the aging brain, suggesting the action of compensatory mechanisms. We show in this work that ageing neurons in culture show large multivesicular bodies (MVBs) filled with intralumenal vesicles (ILVs) and secrete more small extracellular vesicles than younger neurons. We also show that the high number of ILVs is the consequence of the accumulation of cholesterol in MVBs, which in turn is due to decreased levels of the cholesterol extruding protein NPC1. NPC1 down-regulation is the consequence of a combination of upregulation of the NPC1 repressor microRNA 33, and increased degradation, due to Akt-mTOR targeting of NPC1 to the phagosome. Although releasing more exosomes can be beneficial to old neurons, other cells, neighbouring and distant, can be negatively affected by the waste material they contain.


Assuntos
Colesterol/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Corpos Multivesiculares/metabolismo , Neurônios/citologia , Proteína C1 de Niemann-Pick/genética , Animais , Linhagem Celular , Senescência Celular , Regulação para Baixo , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Transdução de Sinais
2.
Front Neurosci ; 14: 562581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343276

RESUMO

In humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42. In vitro, in wild type neurons, exogenous Aß increases the expression of Ngb and Ngb over-expression prevents Aß toxicity. In vivo, in old hAPP NL/F mice, Ngb knockdown leads to dendritic tree simplification, an early sign of Alzheimer's disease. These results could indicate that Alzheimer's symptoms may start developing at the time when defense mechanisms start wearing out. In agreement, analysis of plasma Ngb levels in aged individuals revealed decreased levels in those whose cognitive abilities worsened during a 5-year longitudinal follow-up period.

3.
Nanomedicine (Lond) ; 14(18): 2409-2422, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31456488

RESUMO

Aim: To determine whether a p38 MAPK inhibitor incorporated into nanoemulsion-based chitosan nanocapsules can reduce the activity of this kinase in the brain through their nasal administration in mice. Materials & methods: We selected the p38 MAPK inhibitor PH797804, an ATP-competitive inhibitor of p38α encapsulated in nanoemulsion-based chitosan nanocapsules. Biological effect was evaluated in microglial and neuronal cells in vitro and in ex vivo and in vivo systems, in a mouse model of Alzheimer's disease. Results: Encapsulated inhibitor retains enzymatic inhibitory activity and tissue penetration capacity in vitro, ex vivo and in vivo. Conclusion: Nasal administration of chitosan nanocapsules can be an effective approach for brain-restricted reduction of p38 MAPK activity, thus reducing the side effects of systemic administration.


Assuntos
Benzamidas/administração & dosagem , Encéfalo/efeitos dos fármacos , Quitosana/química , Nanocápsulas/química , Inibidores de Proteínas Quinases/administração & dosagem , Piridonas/administração & dosagem , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzamidas/farmacocinética , Benzamidas/uso terapêutico , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Feminino , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/farmacocinética , Piridonas/uso terapêutico , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Aging Cell ; 18(3): e12932, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884121

RESUMO

In the brain, insulin plays an important role in cognitive processes. During aging, these faculties decline, as does insulin signaling. The mechanism behind this last phenomenon is unclear. In recent studies, we reported that the mild and gradual loss of cholesterol in the synaptic fraction of hippocampal neurons during aging leads to a decrease in synaptic plasticity evoked by glutamate receptor activation and also by receptor tyrosine kinase (RTK) signaling. As insulin and insulin growth factor activity are dependent on tyrosine kinase receptors, we investigated whether the constitutive loss of brain cholesterol is also involved in the decay of insulin function with age. Using long-term depression (LTD) induced by application of insulin to hippocampal slices as a read-out, we found that the decline in insulin function during aging could be monitored as a progressive impairment of insulin-LTD. The application of a cholesterol inclusion complex, which donates cholesterol to the membrane and increases membrane cholesterol levels, rescued the insulin signaling deficit and insulin-LTD. In contrast, extraction of cholesterol from hippocampal neurons of adult mice produced the opposite effect. Furthermore, in vivo inhibition of Cyp46A1, an enzyme involved in brain cholesterol loss with age, improved insulin signaling. Fluorescence resonance energy transfer (FRET) experiments pointed to a change in receptor conformation by reduced membrane cholesterol, favoring ligand-independent autophosphorylation. Together, these results indicate that changes in membrane fluidity of brain cells during aging play a key role in the decay of synaptic plasticity and cognition that occurs at this late stage of life.


Assuntos
Envelhecimento/efeitos dos fármacos , Anticorpos/farmacologia , Encéfalo/efeitos dos fármacos , Colesterol/farmacologia , Resistência à Insulina , Receptor de Insulina/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Células Cultivadas , Colesterol/análise , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA