Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609826

RESUMO

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Canais Iônicos/metabolismo , Lisossomos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Canais de Potássio/metabolismo
2.
Life (Basel) ; 12(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629388

RESUMO

The mitochondrial uncoupling protein 2 (UCP2) acts as an anion transporter and as an antioxidant factor able to reduce the reactive oxygen species level. Based on its effects, UCP2 prevents the membrane lipids, proteins, and DNA damage while preserving normal cellular functions. Many variants have been identified within the human UCP2. Some of them were associated with a higher risk of obesity, diabetes and cardiovascular diseases in different populations. UCP2 appears a suitable candidate also for the risk of ischemic stroke. In the current study, we investigated the possible association between few variants of UCP2 (rs659366, rs660339, rs1554995310) and the risk of ischemic stroke in a genetically homogenous cohort of cases and controls selected in Sardinia Island. This population has been previously analysed for other candidate genes. A total of 250 cases of ischemic stroke and 241 controls were enrolled in the study. The allelic/genotypic distribution of the 3 UCP2 variants was characterized and compared among cases and controls. The results of our study confirmed known risk factors for ischemic stroke: age, history of smoking, hypertension, hypercholesterolemia, and atrial fibrillation. No association was found between the 3 UCP2 variants and the risk of ischemic stroke in our Sardinian cohort.

3.
Front Pharmacol ; 12: 640603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995045

RESUMO

Background: Levodopa (L-Dopa), representing the therapeutic gold standard for the treatment of Parkinson disease (PD), is associated with side effects like L-Dopa induced dyskinesia (LID). Although several non-genetic and genetic factors have been investigated for association with LID risk, contrasting results were reported and its genetic basis remain largely unexplored. Methods: In an Italian PD cohort (N = 460), we first performed stepwise multivariable Cox Proportional Hazard regressions modeling LID risk as a function of gender, PD familiarity, clinical subtype, weight, age-at-onset (AAO) and years-of-disease (YOD), L-Dopa dosage, severity scores, and scales assessing motor (UPDRS-III), cognitive (MoCA), and non-motor symptoms (NMS). Then we enriched the resulting model testing two variants-rs356219 and D4S3481-increasing the expression of the SNCA gene, previously suggested as a potential mechanism of LID onset. To account for more complex (non-linear) relations of these variables with LID risk, we built a survival random forest (SRF) algorithm including all the covariates mentioned above. Results: Among tested variables (N = 460 case-complete, 211 LID events; total follow-up 31,361 person-months, median 61 months), disease duration showed significant association (p < 0.005), with 6 (3-8)% decrease of LID risk per additional YOD. Other nominally significant associations were observed for gender-with women showing a 39 (5-82)% higher risk of LID-and AAO, with 2 (0.3-3)% decrease of risk for each year increase of PD onset. The SRF algorithm confirmed YOD as the most prominent feature influencing LID risk, with a variable importance of about 8% in the model. In genetic models, no statistically significant effects on incident LID risk was observed. Conclusions: This evidence supports a protective effect of late PD onset and gender (men) against LID risk and suggests a new independent protective factor, YOD. Moreover, it underlines the importance of personalized therapeutic protocols for PD patients in the future.

4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807278

RESUMO

Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype-phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.


Assuntos
Autofagia/genética , Doença de Depósito de Glicogênio Tipo II/genética , alfa-Glucosidases/genética , Adulto , Idoso , Autofagia/fisiologia , Terapia de Reposição de Enzimas/métodos , Família , Feminino , Variação Genética/genética , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Mutação , Linhagem , Músculos Respiratórios , Irmãos , alfa-Glucosidases/metabolismo
5.
J Neuroinflammation ; 18(1): 44, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588880

RESUMO

BACKGROUND: Intracellular Ca2+ modulates several microglial activities, such as proliferation, migration, phagocytosis, and inflammatory mediator secretion. Extracellular ATP, the levels of which significantly change during epileptic seizures, activates specific receptors leading to an increase of intracellular free Ca2+ concentration ([Ca2+]i). Here, we aimed to functionally characterize human microglia obtained from cortices of subjects with temporal lobe epilepsy, focusing on the Ca2+-mediated response triggered by purinergic signaling. METHODS: Fura-2 based fluorescence microscopy was used to measure [Ca2+]i in primary cultures of human microglial cells obtained from surgical specimens. The perforated patch-clamp technique, which preserves the cytoplasmic milieu, was used to measure ATP-evoked Ca2+-dependent whole-cell currents. RESULTS: In human microglia extracellular ATP evoked [Ca2+]i increases depend on Ca2+ entry from the extracellular space and on Ca2+ mobilization from intracellular compartments. Extracellular ATP also induced a transient fivefold potentiation of the total transmembrane current, which was completely abolished when [Ca2+]i increases were prevented by removing external Ca2+ and using an intracellular Ca2+ chelator. TRAM-34, a selective KCa3.1 blocker, significantly reduced the ATP-induced current potentiation but did not abolish it. The removal of external Cl- in the presence of TRAM-34 further lowered the ATP-evoked effect. A direct comparison between the ATP-evoked mean current potentiation and mean Ca2+ transient amplitude revealed a linear correlation. Treatment of microglial cells with LPS for 48 h did not prevent the ATP-induced Ca2+ mobilization but completely abolished the ATP-mediated current potentiation. The absence of the Ca2+-evoked K+ current led to a less sustained ATP-evoked Ca2+ entry, as shown by the faster Ca2+ transient kinetics observed in LPS-treated microglia. CONCLUSIONS: Our study confirms a functional role for KCa3.1 channels in human microglia, linking ATP-evoked Ca2+ transients to changes in membrane conductance, with an inflammation-dependent mechanism, and suggests that during brain inflammation the KCa3.1-mediated microglial response to purinergic signaling may be reduced.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Microglia/metabolismo , Lobo Temporal/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Epilepsia Resistente a Medicamentos/patologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/patologia
7.
PLoS One ; 13(10): e0206140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352103

RESUMO

INTRODUCTION: Brain-Derived Neurotrophic Factor (BDNF) and its most common polymorphism Val66Met are known to have a role in Multiple Sclerosis (MS) pathogenesis. Evidence is accumulating that there is an involvement of DNA methylation in the regulation of BDNF expression. The aim of this study was to assess in blood samples of MS patients the correlation between the methylation status of the CpG site near BDNF-Val66Met polymorphism and the severity of the disease. METHODS: We recruited 209 MS patients that were genotyped for the BDNF Val66Met polymorphism. For each patient we quantitatively measured the methylation level of cytosine included in the exonic CpG site that can be created or abolished by the Val66Met BDNF polymorphism. Furthermore, we analyzed the clinical history of each patient and determined the time elapsed since the onset of the disease and an EDSS score of 6.0. RESULTS: The genetic analysis identified 122 (58.4%) subjects carrying the Val/Val genotype, 81 (38.8%) with Val/Met genotype, and 6 (2.8%) carrying the Met/Met genotype. When the endpoint of an EDSS score of 6 was taken into account by means of a survival analysis, 52 failures (i.e., reaching an EDSS score of 6) were reported. When the sample was stratified according to the percentage of the BDNF methylation, subjects falling below the median (median methylation = 81%) were at higher risk of failure (IRD = 0.016; 95%CI = 0.0050-0.0279; p = 0.004). CONCLUSIONS: In patients with a high disease progression the hypomethylation of the BDNF gene could increase the secretion of the protective neurotrophin, so epigenetic modifications could be the organism response to limit a brain functional reserve loss. Our study suggests that the percentage of methylation of the BDNF gene could be used as a prognostic factor for disease progression toward a high disability in MS patient.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Metilação de DNA , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Progressão da Doença , Feminino , Seguimentos , Frequência do Gene , Genótipo , Humanos , Masculino , Esclerose Múltipla/patologia , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...