Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 101, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566056

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS: In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS: A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.


Assuntos
Yarrowia , Fermentação , Yarrowia/metabolismo , Caproatos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos/metabolismo , Ácidos/metabolismo , Perfilação da Expressão Gênica , Carbono/metabolismo
2.
Bioengineered ; 14(1): 2286723, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010763

RESUMO

Cutaneotrichosporon curvatum and Yarrowia lipolytica can accumulate microbial oils using short-chain fatty acids (SCFA) as carbon sources. SCFAs-rich media often contain significant amounts of nitrogen that prevent high carbon:nitrogen (C:N) ratios necessary to boost lipid production. This work assessed the intrinsic ability of C. curvatum and Y. lipolytica to produce high amounts of microbial oils from these unusual carbon sources. Results demonstrated that minor differences in SCFA concentration (only 2 g/L) had a significant effect on yeast growth and lipid production. A C:N of 80 promoted yeast growth at all SCFA concentrations and favored SCFA consumption at 19 g/L SCFAs. The different SCFA uptake preferences in C. curvatum and Y. lipolytica highlighted the importance of considering the SCFA profile to select a suitable yeast strain for microbial oils production. At the most challenging SCFA concentration (19 g/L), 57.2% ±1.6% (w/w) and 78.4 ± 0.6% (w/w) lipid content were obtained in C. curvatum and Y. lipolytica, respectively. These values are among the highest reported for wild-type strains. To circumvent the challenges associated with media with high nitrogen content, this report also proved struvite precipitation as an effective method for increasing lipid production (from 17.9 ± 3.9% (w/w) to 41.9 ± 2.6% (w/w)) after nitrogen removal in food waste-derived media.


Slight variations in SCFA concentrations have a relevant effect on yeast lipid productionHigh nitrogen availability is crucial to promote cell growth at very high SCFA concentrationsC:N effect on cell growth and lipid production is specie-specific and may depend on yeast robustnessYeast strains have diverse SCFA preferences and differently metabolize these acidsStruvite precipitation effectively removes nitrogen from real digestates increasing C:N.


Assuntos
Eliminação de Resíduos , Yarrowia , Alimentos , Óleos , Ácidos Graxos Voláteis , Ácidos Carboxílicos , Carbono , Nitrogênio
3.
PLoS One ; 18(6): e0286501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37327231

RESUMO

The worldwide outbreak of the coronavirus was first identified in 2019 in Wuhan, China. Since then, the disease has spread worldwide. As it is currently spreading in the United States, policy makers, public health officials and citizens are racing to understand the impact of this virus on the United States healthcare system. They fear a rapid influx of patients overwhelming the healthcare system and leading to unnecessary fatalities. Most countries and states in America have introduced mitigation strategies, such as using social distancing to decrease the rate of newly infected people. This is what is usually meant by flattening the curve. In this paper, we use queueing theoretic methods to analyze the time evolution of the number of people hospitalized due to the coronavirus. Given that the rate of new infections varies over time as the pandemic evolves, we model the number of coronavirus patients as a dynamical system based on the theory of infinite server queues with time inhomogeneous Poisson arrival rates. With this model we are able to quantify how flattening the curve affects the peak demand for hospital resources. This allows us to characterize how aggressive societal policy needs to be to avoid overwhelming the capacity of healthcare system. We also demonstrate how curve flattening impacts the elapsed lag between the times of the peak rate of hospitalizations and the peak demand for the hospital resources. Finally, we present empirical evidence from Italy and the United States that supports the insights from our model analysis.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Atenção à Saúde , Hospitalização , Hospitais , Pandemias/prevenção & controle
4.
Microb Biotechnol ; 16(2): 372-380, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36537050

RESUMO

Microbial lipids for chemical synthesis are commonly obtained from sugar-based substrates which in most cases is not economically viable. As a low-cost carbon source, short-chain fatty acids (SCFAs) that can be obtained from food wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using Yarrowia lipolytica ACA DC 50109. For this purpose, different amounts of SCFAs, sulfate, phosphate and carbon: phosphate ratios were used in both synthetic and real SCFAs-rich media. Although sulfate limitation did not increase lipid accumulation, phosphate limitation was proved to be an optimal strategy for increasing lipid content and lipid yields in both synthetic and real media, reaching a lipid productivity up to 8.95 g/L h. Remarkably, the highest lipid yield (0.30 g/g) was achieved under phosphate absence condition (0 g/L). This fact demonstrated the suitability of using low-phosphate concentrations to boost lipid production from SCFAs.


Assuntos
Fosfatos , Yarrowia , Ácidos Graxos Voláteis , Glucose , Carbono , Ácidos Graxos
5.
Biotechnol Biofuels Bioprod ; 15(1): 37, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35440008

RESUMO

BACKGROUND: Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids. Recent research efforts have been focused on developing rapid and accurate fluorometric methods for the quantification of intracellular yeast lipids. Nevertheless, the current methods are often tedious and/or exhibit low reproducibility. RESULTS: This work evaluated the reliability of different fluorescence measurements (fluorescence intensity, total area and fluorescence quantum yield) using Nile Red as lipid dye in two yeast strains (Yarrowia lipolytica ACA-DC 50109 and Cutaneotrichosporon curvatum NRRL-Y-1511). Different standard curves were obtained for each yeast specie. Fermentation tests were carried with 6-month difference to evaluate the effect of the fluorometer lamp lifetime on lipid quantification. CONCLUSIONS: Fluorescence quantum yield presented the most consistent measurements along time and the closer estimations when compared with lipids obtained by conventional methods (extraction and gravimetrical determination). The need of using fluorescence quantum yield to estimate intracellular lipids, which is not the common trend in studies focused on microbial lipid production, was stressed. The information here provided will surely enable more accurate results comparison.

6.
Eur J Med Chem ; 221: 113535, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992930

RESUMO

Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARß/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.


Assuntos
Produtos Biológicos/farmacologia , Síndrome Metabólica/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Humanos , Síndrome Metabólica/metabolismo , Estrutura Molecular , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Relação Estrutura-Atividade
7.
Am J Physiol Renal Physiol ; 293(3): F732-40, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17596531

RESUMO

Cystinuria is a hereditary disorder caused by a defect in the apical membrane transport system for cystine and dibasic amino acids in renal proximal tubules and intestine, resulting in recurrent urolithiasis. Mutations in SLC3A1 and SLC7A9 genes, that codify for rBAT/b(0,+)AT transporter subunits, cause type A and B cystinuria, respectively. In humans, cystinuria treatment is based on the prevention of calculi formation and its dissolution or breakage. Persistent calculi are treated with thiols [i.e., d-penicillamine (DP) and mercaptopropionylglycine (MPG)] for cystine solubilization. We have developed a new protocol with DP to validate our Slc7a9 knockout mouse model for the study of the therapeutic effect of drugs in the treatment of cystine lithiasis. We performed a 5-wk treatment of individually caged lithiasic mutant mice with a previously tested DP dose. To appraise the evolution of lithiasis throughout the treatment a noninvasive indirect method of calculi quantification was developed: calculi mass was quantified by densitometry of X-ray images from cystinuric mice before and after treatment. Urine was collected in metabolic cage experiments to quantify amino acids in DP-treated and nontreated, nonlithiasic mutant mice. We found significant differences between DP-treated and nontreated knockout mice in calculi size and in urinary cystine excretion. Histopathological analysis showed that globally nontreated mutant mice had more severe and diffuse urinary system damage than DP-treated mice. Our results validate the use of this mouse model for testing the efficacy of potential new drugs against cystinuria.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Cistinúria/genética , Cálculos Renais/tratamento farmacológico , Litíase , Penicilamina/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Cistinúria/metabolismo , Cistinúria/patologia , Modelos Animais de Doenças , Cálculos Renais/genética , Cálculos Renais/metabolismo , Córtex Renal/patologia , Camundongos , Camundongos Knockout , Tamanho do Órgão , Fatores de Tempo , Bexiga Urinária/patologia
8.
Genes Dev ; 18(1): 99-115, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14701881

RESUMO

Epithelial-to-mesenchymal transition (EMT) is fundamental to both embryogenesis and tumor metastasis. The Notch intercellular signaling pathway regulates cell fate determination throughout metazoan evolution, and overexpression of activating alleles is oncogenic in mammals. Here we demonstrate that Notch activity promotes EMT during both cardiac development and oncogenic transformation via transcriptional induction of the Snail repressor, a potent and evolutionarily conserved mediator of EMT in many tissues and tumor types. In the embryonic heart, Notch functions via lateral induction to promote a selective transforming growth factor-beta (TGFbeta)-mediated EMT that leads to cellularization of developing cardiac valvular primordia. Embryos that lack Notch signaling elements exhibit severely attenuated cardiac snail expression, abnormal maintenance of intercellular endocardial adhesion complexes, and abortive endocardial EMT in vivo and in vitro. Accordingly, transient ectopic expression of activated Notch1 (N1IC) in zebrafish embryos leads to hypercellular cardiac valves, whereas Notch inhibition prevents valve development. Overexpression of N1IC in immortalized endothelial cells in vitro induces EMT accompanied by oncogenic transformation, with corresponding induction of snail and repression of VE-cadherin expression. Notch is expressed in embryonic regions where EMT occurs, suggesting an intimate and fundamental role for Notch, which may be reactivated during tumor metastasis.


Assuntos
Transformação Celular Neoplásica/genética , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/embriologia , Proteínas de Membrana/genética , Mesoderma/citologia , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário e Fetal , Camundongos , Técnicas de Cultura de Órgãos , Ratos , Receptores de Superfície Celular/genética , Receptores Notch , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...