Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 671, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182870

RESUMO

The incorporation of waste materials into cementitious binders serves as a strategy to diminish waste volume and lower carbon emissions. This study presents an in-depth evaluation of calcium carbide residue and coal fly ash as alternative binders. The assessment of raw materials emphasized their chemical composition and potential for pozzolanic reactions. Based on these factors, the optimal ratio of Ca/(SiO2 + Al2O3) in the raw materials was determined to be 1.5. Therefore, this study was designed to vary the raw material composition with a CaO/(SiO2 + Al2O3) ratio ranging from 1.7 to 0.9. Upon investigating the effect of the raw material proportion on the compressive strength of pastes and mortars, the composition yielding the highest compressive strength was selected for its potential application as a stabilizer for loess soil. A mixture of calcium carbide residue and coal fly ash with a Ca/(SiO2 + Al2O3) ratio of 1.5 resulted in the highest compressive strength at long curing periods in both pastes and mortars. Mineralogical and microstructural analyses revealed several products, beyond those formed from the pozzolanic reactions, that occurred and enhanced the compressive strength of samples. The highest performing mixture of carbide residue and coal fly ash was then used to stabilize loess soil at 10-25 wt%. The unconfined compressive strength, along with mass and strength loss due to wetting and drying cycles, was also studied. It was observed that the unconfined compressive strength of the stabilized soils remained consistent after six wet-dry cycles but decreased after twelve cycles due to microcracks. The findings suggest that carefully designed mixtures based on the chemical interactions of calcium carbide residue and coal fly ash can offer a sustainable, efficient approach for soil stabilization, potentially revolutionizing construction practices.

2.
Materials (Basel) ; 14(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073874

RESUMO

Two substitution levels of Portland cement by silica fume (SF; 30 and 50 mass%) and three hydrothermal treatment regimes (0.5, 1.2, and 2 MPa and 165, 195, and 220 °C for 7 days, respectively) were selected for the investigation of high-temperature phase formation. A combination of thermogravimetric, X-ray diffraction, and Fourier transform infrared analyses in the mid-IR region was used to overcome the shortcomings of individual techniques for the identification of these complex systems. Changes in molecular water amounts, the polymerization degree of silicate chains, or their decomposition due to transformations and crystallization of phases at hydrothermal conditions were observed and discussed concerning composition. Contrary to the calciochondrite, hydrogrossular phases, α-C2SH, and jaffeite detected in the systems without SF, a decrease in CaO/SiO2 ratio resulted in the formation of stable tobermorite in the case of 30 mass% SF, whilst calcium hydrogen silicate, gyrolite, and cowlesite were identified as more thermally stable phases in the samples with 50 mass% SF.

3.
Materials (Basel) ; 13(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423034

RESUMO

The paper describes the mechanical behavior of fine recycled concrete aggregate (FRCA) concrete according to the mineral admixtures. Three types of the mineral admixtures, i.e., fly ash (FA), ground-granulated blast-furnace slag (GGBS), and silica fume (SF), are used and the replacement ratios of FRCA are 50% and 100%. The dosages of the admixtures of FA, GGBS, and SF are determined with the normal dosage (30%, 40%, and 5.0%, respectively) based on the ACI committee reports (No. 232, 233, and 234) and half-normal dosage. The mechanical performance is investigated with the compressive and splitting tensile strength, and elastic modulus. Additionally, the total porosity is measured in natural fine aggregate (NFA) and FRCA 100% replaced specimens by mercury intrusion porosimetry (MIP) for investigating the relationship with the compressive strength. Based on the experimental test results, the mineral admixtures improve the mechanical performance of FRCA concrete. The effective dosages of FA, GGBS, and SF for FRCA concrete are investigated according to the replacement ratio of the FRCA. In particular, FRCA 100% replaced concrete may be possible to be used for the structural concrete members with the specific dosage of the mineral admixtures. The prediction of the splitting tensile strength and the elastic modulus by the codes or previous formulas exhibits underestimated and overestimated results, respectively. The relationship between the total porosity and the compressive strength of the FRCA concrete should be modified with more experimental tests.

4.
Artigo em Inglês | MEDLINE | ID: mdl-16601796

RESUMO

The worldwide growing interest to biomaterials over the last years results from their irreplaceable role in medical clinic. Hydroxyapatite is used in bone reconstruction because of its similar chemical structure compared to the inorganic composition of human bone and it is basic building component of many newly prepared biomaterials. In this study, we evaluated cytotoxic/antiproliferative activity of hydroxyapatite extract using murine fibroblast cell line NIH-3T3 and two in vitro different cytotoxic assays: growth inhibition assay and MTT assay. Hydroxyapatite extract after 72 h of incubation manifested the significant in vitro cytotoxic/antiproliferative effect only at the highest concentration tested (100 %). The antiproliferative effect of hydroxyapatite extract at the other concentrations tested (75 %, 50 %, 25 %, 10 %, 5 % and 1 %) was directly proportional to the concentration and the time of influence. The inhibition of cell proliferation was 86.8 - 0 %. The sensitivity of cell growth inhibition assay (direct counting of viable cells) to the extract influence was higher than that of MTT test.


Assuntos
Substitutos Ósseos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Durapatita/toxicidade , Teste de Materiais , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Corantes , Camundongos , Células NIH 3T3 , Sais de Tetrazólio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...