Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(8): 100812, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004188

RESUMO

Data-dependent liquid chromatography tandem mass spectrometry is challenged by the large concentration range of proteins in plasma and related fluids. We adapted the SCoPE method from single-cell proteomics to pericardial fluid, where a myocardial tissue carrier was used to aid protein quantification. The carrier proteome and patient samples were labeled with distinct isobaric labels, which allowed separate quantification. Undepleted pericardial fluid from patients with type 2 diabetes mellitus and/or heart failure undergoing heart surgery was analyzed with either a traditional liquid chromatography tandem mass spectrometry method or with the carrier proteome. In total, 1398 proteins were quantified with a carrier, compared to 265 without, and a higher proportion of these proteins were of myocardial origin. The number of differentially expressed proteins also increased nearly four-fold. For patients with both heart failure and type 2 diabetes mellitus, pathway analysis of upregulated proteins demonstrated the enrichment of immune activation, blood coagulation, and stress pathways. Overall, our work demonstrates the applicability of a carrier for enhanced protein quantification in challenging biological matrices such as pericardial fluid, with potential applications for biomarker discovery. Mass spectrometry data are available via ProteomeXchange with identifier PXD053450.

2.
Proteomics ; 24(6): e2300236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37706597

RESUMO

Clinical biomarker discovery is often based on the analysis of human plasma samples. However, the high dynamic range and complexity of plasma pose significant challenges to mass spectrometry-based proteomics. Current methods for improving protein identifications require laborious pre-analytical sample preparation. In this study, we developed and evaluated a TMTpro-specific spectral library for improved protein identification in human plasma proteomics. The library was constructed by LC-MS/MS analysis of highly fractionated TMTpro-tagged human plasma, human cell lysates, and relevant arterial tissues. The library was curated using several quality filters to ensure reliable peptide identifications. Our results show that spectral library searching using the TMTpro spectral library improves the identification of proteins in plasma samples compared to conventional sequence database searching. Protein identifications made by the spectral library search engine demonstrated a high degree of complementarity with the sequence database search engine, indicating the feasibility of increasing the number of protein identifications without additional pre-analytical sample preparation. The TMTpro-specific spectral library provides a resource for future plasma proteomics research and optimization of search algorithms for greater accuracy and speed in protein identifications in human plasma proteomics, and is made publicly available to the research community via ProteomeXchange with identifier PXD042546.


Assuntos
Proteômica , Software , Humanos , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Proteínas , Algoritmos , Bases de Dados de Proteínas , Biblioteca de Peptídeos
3.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765599

RESUMO

Malignant pleural mesothelioma (MPM) is an asbestos-associated, highly aggressive cancer characterized by late-stage diagnosis and poor prognosis. Gold standards for diagnosis are pleural biopsy and cytology of pleural effusion (PE), both of which are limited by low sensitivity and markedly inter-observer variations. Therefore, the assessment of PE biomarkers is considered a viable and objective diagnostic tool for MPM diagnosis. We applied a novel affinity-enrichment mass spectrometry-based proteomics method for explorative analysis of pleural effusions from a prospective cohort of 84 patients referred for thoracoscopy due to clinical suspicion of MPM. Protein biomarkers with a high capability to discriminate MPM from non-MPM patients were identified, and a Random Forest algorithm was applied for building classification models. Immunohistology of pleural biopsies confirmed MPM in 40 patients and ruled out MPM in 44 patients. Proteomic analysis of pleural effusions identified panels of proteins with excellent diagnostic properties (90-100% sensitivities, 89-98% specificities, and AUC 0.97-0.99) depending on the specific protein combination. Diagnostic proteins associated with cancer growth included galactin-3 binding protein, testican-2, haptoglobin, Beta ig-h3, and protein AMBP. Moreover, we also confirmed previously reported diagnostic accuracies of the MPM markers fibulin-3 and mesothelin measured by two complementary mass spectrometry-based methods. In conclusion, a novel affinity-enrichment mass spectrometry-based proteomics identified panels of proteins in pleural effusion with extraordinary diagnostic accuracies, which are described here for the first time as biomarkers for MPM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA