Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(6): 2115-2121, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38938818

RESUMO

Chalcogen bonding interactions (ChBIs) have been widely employed to create ordered noncovalent assemblies in solids and liquids. Yet, their ability to engineer molecular self-assembly on surfaces has not been demonstrated. Here, we report the first demonstration of on-surface molecular recognition solely governed by ChBIs. Scanning tunneling microscopy and ab initio calculations reveal that a pyrenyl derivative can undergo noncovalent chiral dimerization on the Au(111) surface through double Ch···N interactions involving Te- or Se-containing chalcogenazolo pyridine motifs. In contrast, reference chalcogenazole counterparts lacking the pyridyl moiety fail to form regular self-assemblies on Au, resulting in disordered assemblies.

2.
ACS Appl Mater Interfaces ; 16(26): 33789-33795, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899807

RESUMO

In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor-liquid-solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices.

4.
J Phys Condens Matter ; 36(22)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38346347

RESUMO

In the present work, by using molecular dynamics (MD) simulations, we investigate the mechanical properties of different nanostructures that may be core elements in next generation flexible/wearable photovoltaic devices, namely double layer WS2nanosheets (DLNS), graphene/WS2(layer) composites and graphene/WS2nanotube (NT) composites. Our results reveal that the mechanical properties of DLNS deteriorate when compared to those of monolayer WS2. Owing to graphene's reinforcement action, the mechanical properties of graphene/WS2(layer) composite with both layers deformed are superior than those of WS2, even though inferior than those of bare graphene. If stress is applied only to the graphene layer, the graphene/WS2composite retains the most of the strength and toughness of monolayer graphene, decreasing the fracture strength and Young's modulus by only 9.7% and 16.3%, respectively. Similarly, in the case of the graphene/WS2NT composite the mechanical strength and toughness experience a reduction compared to monolayer graphene, specifically by 15% and 53% for fracture strength and Young's modulus, respectively. Considering the market's keen interest in nanomaterials, particularly van der Waals (vdW) ones, for flexible and wearable photovoltaic devices, the findings presented here will significantly enhance the effective utilization of vdW composites.

5.
Mater Adv ; 4(7): 1720-1730, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37026040

RESUMO

We investigate the effect of metal cation substition on the excitonic structure and dynamics in a prototypical Ruddlesden-Popper metal halide. Through an in-depth spectroscopic and theoretical analysis, we identify the presence of multiple resonances in the optical spectra of a phenethyl ammonium tin iodide, a tin-based RPMH. Based on ab initio calculations, we assign these resonances to distinct exciton series that originate from the splitting of the conduction band due to spin-orbit coupling. While the splitting energy in the tin based system is low enough to enable the observation of the higher lying exciton in the visible-range spectrum of the material, the higher splitting energy in the lead counterpart prevents the emergence of such a feature. We elucidate the critical role played by the higher lying excitonic state in the ultrafast carrier thermalization dynamics.

6.
J Phys Chem Lett ; 14(6): 1548-1555, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745501

RESUMO

In view of its potential applicability in photoconversion processes, we here discuss the optoelectronic features of the recently proposed tin-based oxynitride material for (photo)catalysis, InSnO2N. In detail, by combining Density Functional and Many-Body Perturbation Theory, we compute the electronic and optical properties discussing how they vary from the nonpolar phase to the more stable polar one. After providing a detailed, unbiased, description of the optoelectronic features of the two phases, we have finally calculated the Spectroscopic Limited Maximum Efficiency and obtained data that further witness the relevance of InSnO2N for solar energy conversion processes.

7.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499811

RESUMO

The study of intra and interlayer excitons in 2D semiconducting vdW heterostructures is a very hot topic not only from a fundamental but also an applicative point of view. Due to their strong light-matter interaction, Transition Metal Dichalcogenides (TMD) and group-III nitrides are particularly attractive in the field of opto-electronic applications such as photo-catalytic and photo-voltaic ultra-thin and flexible devices. Using first-principles ground and excited-state simulations, we investigate here the electronic and excitonic properties of a representative nitride/TMD heterobilayer, the AlN/WS2. We demonstrate that the band alignment is of type I, and low energy intralayer excitons are similar to those of a pristine WS2 monolayer. Further, we disentangle the role of strain and AlN dielectric screening on the electronic and optical gaps. These results, although they do not favor the possible use of AlN/WS2 in photo-catalysis, as envisaged in the previous literature, can boost the recently started experimental studies of 2D hexagonal aluminum nitride as a good low screening substrate for TMD-based electronic and opto-electronic devices. Importantly, our work shows how the inclusion of both spin-orbit and many-body interactions is compulsory for the correct prediction of the electronic and optical properties of TMD/nitride heterobilayers.

8.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745456

RESUMO

In this work, we study the structural and electronic properties of boron nitride bilayers sandwiched between graphene sheets. Different stacking, twist angles, doping, as well as an applied external gate voltage, are reported to induce important changes in the electronic band structure near the Fermi level. Small electronic lateral gaps of the order of few meV can appear near the Dirac points K. We further discuss how the bandstructures change applying a perpendicular external electric field, showing how its application lifts the degeneracy of the Dirac cones and, in the twisted case, moves their crossing points away from the Fermi energy. Then, we consider the possibility of co-doping, in an asymmetric way, the two external graphene layers. This is a situation that could be realized in heterostructures deposited on a substrate. We show that the co-doping acts as an effective external electric field, breaking the Dirac cones degeneracy. Finally, our work demonstrates how, by playing with field strength and p-n co-doping, it is possible to tune the small lateral gaps, pointing towards a possible application of C/BN sandwich structures as nano-optical terahertz devices.

9.
ACS Appl Mater Interfaces ; 13(36): 43615-43621, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34468121

RESUMO

Transition-metal dichalcogenides (TMDs) represent a class of materials whose archetypes, such as MoS2 and WS2, possess exceptional electronic and optical properties and have been massively exploited in optoelectronic applications. The layered structure allows for their exfoliation to two-dimensional samples with atomic thickness (≲ 1 nm), promising for ultrathin, ultralight devices. In this work, by means of state-of-the-art ab initio many-body perturbation theory techniques, we focus on single-layer PdS2 and PtS2 and propose a novel van der Waals heterostructure with outstanding light absorbance, reaching up to 50% in the visible spectrum and yielding a maximum short-circuit current of 7.2 mA/cm2 under solar irradiation. The computed excitonic landscape predicts a partial charge separation between the two layers and the momentum-forbidden lowest-energy state increases the carrier diffusion length. Our results show that the employment of vertical heterostructures with less conventional TMDs, such as PdS2/PtS2, can greatly boost light absorbance and favor the development of more efficient, atomic-thin photovoltaic devices.

10.
J Phys Chem Lett ; 12(2): 869-875, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33428409

RESUMO

The nature of optical excitations and the spatial extent of excitons in organic semiconductors, both of which determine exciton diffusion and carrier mobilities, are key factors for the proper understanding and tuning of material performances. Using a combined experimental and theoretical approach, we investigate the excitonic properties of meso-tetraphenyl porphyrin-Zn(II) crystals. We find that several bands contribute to the optical absorption spectra, beyond the four main ones considered here as the analogue to the four frontier molecular orbitals of the Gouterman model commonly adopted for the isolated molecule. By using many-body perturbation theory in the GW and Bethe-Salpeter equation approach, we interpret the experimental large optical anisotropy as being due to the interplay between long- and short-range intermolecular interactions. In addition, both localized and delocalized excitons in the π-stacking direction are demonstrated to determine the optical response, in agreement with recent experimental observations reported for organic crystals with similar molecular packing.

11.
Materials (Basel) ; 13(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806742

RESUMO

We report a cathodoluminescence (CL) study of layered germanium sulfide (GeS) where we observe a sharp emission peak from flakes covered with a thin hexagonal boron nitride film. GeS is a material that has recently attracted considerable interest due to its emission in the visible region and its strong anisotropy. The measured CL peak is at ~1.69 eV for samples ranging in thickness from 97 nm to 45 nm, where quantum-confinement effects can be excluded. By performing ab initio ground- and excited-state simulations for the bulk compound, we show that the measured optical peak can be unambiguously explained by radiative recombination of the first free bright bound exciton, which is due to a mixing of direct transitions near the Γ-point of the Brillouin Zone and it is associated to a very large optical anisotropy. The analysis of the corresponding excitonic wave function shows a Wannier-Mott interlayer character, being spread not only in-plane but also out-of-plane.

12.
Nat Nanotechnol ; 15(5): 367-372, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32123382

RESUMO

Monolayer transition-metal dichalcogenides in the T' phase could enable the realization of the quantum spin Hall effect1 at room temperature, because they exhibit a prominent spin-orbit gap between inverted bands in the bulk2,3. Here we show that the binding energy of electron-hole pairs excited through this gap is larger than the gap itself in the paradigmatic case of monolayer T' MoS2, which we investigate from first principles using many-body perturbation theory4. This paradoxical result hints at the instability of the T' phase in the presence of spontaneous generation of excitons, and we predict that it will give rise to a reconstructed 'excitonic insulator' ground state5-7. Importantly, we show that in this monolayer system, topological and excitonic order cooperatively enhance the bulk gap by breaking the crystal inversion symmetry, in contrast to the case of bilayers8-16 where the frustration between the two orders is relieved by breaking time reversal symmetry13,15,16. The excitonic topological insulator is distinct from the bare topological phase because it lifts the band spin degeneracy, which results in circular dichroism. A moderate biaxial strain applied to the system leads to two additional excitonic phases, different in their topological character but both ferroelectric17,18 as an effect of electron-electron interaction.

13.
ACS Nano ; 14(4): 4861-4870, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32155048

RESUMO

The physical properties of two-dimensional (2D) materials depend strongly on the number of layers. Hence, methods for controlling their thickness with atomic layer precision are highly desirable, yet still too rare, and demonstrated for only a limited number of 2D materials. Here, we present a simple and scalable method for the continuous layer-by-layer thinning that works for a large class of 2D materials, notably layered germanium pnictides and chalcogenides. It is based on a simple oxidation/etching process, which selectively occurs on the topmost layers. Through a combination of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction experiments we demonstrate the thinning method on germanium arsenide (GeAs), germanium sulfide (GeS), and germanium disulfide (GeS2). We use first-principles simulation to provide insights into the oxidation mechanism. Our strategy, which could be applied to other classes of 2D materials upon proper choice of the oxidation/etching reagent, supports 2D material-based device applications, e.g., in electronics or optoelectronics, where a precise control over the number of layers (hence over the material's physical properties) is needed. Finally, we also show that when used in combination with lithography, our method can be used to make precise patterns in the 2D materials.

14.
Faraday Discuss ; 222(0): 217-239, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32108213

RESUMO

Silicon nanocrystals and nanowires have been extensively studied because of their novel properties and their applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. Here we discuss results from ab initio calculations for undoped and doped Si nanocrystals and nanowires, showing how theory can aid and improve comprehension of the structural, electronic and optical properties of these systems.

15.
J Phys Condens Matter ; 32(8): 084001, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31698340

RESUMO

Gallium nitride (GaN) is a key semiconductor for solid-state lighting, but its radiative processes are not fully understood. Here we show a first-principles approach to accurately compute the radiative lifetimes in bulk uniaxial crystals, focusing on wurtzite GaN. Our computed radiative lifetimes are in very good agreement with experiment up to 100 K. We show that taking into account excitons (through the Bethe-Salpeter equation) and spin-orbit coupling is essential for computing accurate radiative lifetimes. A model for exciton dissociation into free carriers allows us to compute the radiative lifetimes up to room temperature. Our work enables precise radiative lifetime calculations in III-nitrides and other anisotropic solid-state emitters.

16.
J Phys Chem Lett ; 9(19): 5891-5896, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244580

RESUMO

The knowledge of the exact nature of the electronic and optical excitations of Ruddlesden-Popper organic-inorganic halide perovskites (RPPs) is particularly relevant in view of their usage in optoelectronic devices. By means of parameter-free quantum-mechanical simulations, we unambiguously demonstrate the dominant role of many-body Coulomb interaction, as recently proposed by Blancon et al. Indeed, focusing on the first two terms ( n = 1,2) of the Pb-based buthylammonium series, in the form of both isolated nanosheet and repeated bulk-like quantum well, we observe large band gap renormalization and strongly bound excitons with binding energies up to ∼1 eV in the thinnest isolated nanosheet. Notably, taking into account electronic correlation beyond density functional theory, we obtain exciton reduced masses similar to the corresponding 3D bulk counterpart and large Rashba splitting of the same order of the value reported by Zhai et al. in a recent experimental work.

17.
Nano Lett ; 18(6): 3839-3843, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29737164

RESUMO

Monolayer transition metal dichalcogenides (TMDCs) are direct gap semiconductors with a unique potential for use in ultrathin light emitters. However, their photoluminescence (PL) is not completely understood. We develop an approach to compute the radiative recombination rate in monolayer TMDCs as a function of photon emission direction and polarization. Using exciton wavefunctions and energies obtained with the ab initio Bethe-Salpeter equation, we obtain polar plots of the PL for different scenarios. Our results can explain the PL anisotropy and polarization dependence measured in recent experiments and predict that light is emitted with a peak intensity normal to the exciton dipole in monolayer TMDCs. We show that excitons emit light anisotropically upon recombination when they are in any quantum superposition state of the K and K' inequivalent valleys. When averaged over the emission angle and exciton momentum, our new treatment recovers the temperature-dependent radiative lifetimes that we previously derived. Our work demonstrates a generally applicable first-principles approach to studying anisotropic light emission in two-dimensional materials.

18.
J Phys Chem Lett ; 8(16): 3867-3873, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28766332

RESUMO

Despite most of the applications of anatase nanostructures rely on photoexcited charge processes, yet profound theoretical understanding of fundamental related properties is lacking. Here, by means of ab initio ground and excited-state calculations, we reveal, in an unambiguous way, the role of quantum confinement effect and of the surface orientation, on the electronic and optical properties of anatase nanosheets (NSs). The presence of bound excitons extremely localized along the (001) direction, whose existence has been recently proven also in anatase bulk, explains the different optical behavior found for the two orientations - (001) and (101) - when the NS thickness increases. We suggest also that the almost two-dimensional nature of these excitons can be related to the improved photoconversion efficiency observed when a high percentage of (001) facet is present in anatase nanocrystals.

19.
Nano Lett ; 17(8): 4753-4758, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28654293

RESUMO

Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.

20.
Nano Lett ; 16(9): 5694-700, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27530077

RESUMO

Recent experimental investigations have confirmed the possibility to synthesize and exploit polytypism in group IV nanowires. Driven by this promising evidence, we use first-principles methods based on density functional theory and many-body perturbation theory to investigate the electronic and optical properties of hexagonal-diamond and cubic-diamond Si NWs as well as their homojunctions. We show that hexagonal-diamond NWs are characterized by a more pronounced quantum confinement effect than cubic-diamond NWs. Furthermore, they absorb more light in the visible region with respect to cubic-diamond ones and, for most of the studied diameters, they are direct band gap materials. The study of the homojunctions reveals that the diameter has a crucial effect on the band alignment at the interface. In particular, at small diameters the band-offset is type-I whereas at experimentally relevant sizes the offset turns up to be of type-II. These findings highlight intriguing possibilities to modulate electron and hole separations as well as electronic and optical properties by simply modifying the crystal phase and the size of the junction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...