Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 31(37)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34733130

RESUMO

Disruption of vulnerable atherosclerotic plaques often leads to myocardial infarction and stroke, the leading causes of morbidity and mortality in the United States. A diagnostic method that detects high-risk atherosclerotic plaques at early stages could prevent these sequelae. The abundance of immune cells in the arterial wall, especially inflammatory Ly-6Chi monocytes and foamy macrophages, is indicative of plaque inflammation, and may be associated with plaque vulnerability. Hence, we sought to develop a new method that specifically targets these immune cells to offer clinically-relevant diagnostic information about cardiovascular disease. We combine ultra-selective nanoparticle targeting of Ly-6Chi monocytes and foamy macrophages with clinically-viable photoacoustic imaging (PAI) in order to precisely and specifically image inflamed plaques ex vivo in a mouse model that mimics human vulnerable plaques histopathologically. Within the plaques, high-dimensional single-cell flow cytometry (13-parameter) showed that our nanoparticles were almost-exclusively taken up by the Ly-6Chi monocytes and foamy macrophages that heavily infiltrate plaques. PAI identified inflamed atherosclerotic plaques that display ~6-fold greater signal compared to controls (P<0.001) six hours after intravenous injection of ultra-selective carbon nanotubes, with in vivo corroboration via optical imaging. Our highly selective strategy may provide a targeted, non-invasive imaging strategy to accurately identify and diagnose inflamed atherosclerotic lesions.

2.
Small ; 13(23)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28440049

RESUMO

The clinical applications of silver nanoparticles (AgNPs) remain limited due to the lack of well-established methodologies for studying their nanokinetics. Hereby, the primary goal is to adapt a suite of analytical-based methodologies for examining the in vitro absorption, distribution, metabolism, and elimination of AgNPs. Vero 76 and HEK 293 cells are exposed to ≈10-nm spherical AgNPs+ and AgNPs- at relevant concentrations (0-300 µg mL-1 ) and times (4-48 h). Absorption: Inductively coupled plasma optical emission spectroscopy (ICP-OES) demonstrates that the two AgNP formulations are not bioequivalent. For example, different bioavailabilities (Cmaximum < 20.7 ± 4% and 6.82 ± 0.4%), absorption times (Tmaximum > 48 and ≈24 h), and absorption rate laws (first- and zeroth-order at 300 µg mL-1 ) are determined in Vero 76 for AgNPs+ and AgNPs- , respectively. Distribution: Raman and CytoViva hyperspectral imaging show different cellular localizations for AgNPs+ and AgNPs- . Metabolism: Cloud point extraction (CPE)-tangential flow filtration (TFF) reveal that ≤ 11% ± 4% of the administered, sublethal AgNPs release Ag+ and contribute to the observed cytotoxicity. Elimination: ICP-OES-CPE suggests that AgNPs are cleared via exocytosis.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Células HEK293 , Humanos
3.
Environ Sci Technol ; 50(13): 7056-65, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27253383

RESUMO

Nowadays, silver nanoparticles (AgNPs) are utilized in numerous applications, raising justified concerns about their release into the environment. This study demonstrates the potential to use freshwater crayfish as a benthic-zone indicator of nanosilver and ionic silver pollution. Crayfish were acclimated to 20 L aquaria filled with Hudson River water (HRW) and exposed for 14 days to widely used Creighton AgNPs and Ag(+) at doses of up to 360 µg L(-1) to surpass regulated water concentrations. The uptake and distribution of Ag in over 650 exoskeletons, gills, hepatopancreas and muscles samples were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) in conjunction with two complementary U.S. EPA-endorsed methods: the external calibration and the standard additions. Reflecting the environmental plasticity of the two investigated species, Orconectes virilis accumulated in a dose-dependent manner more Ag than Procambarus clarkii (on average 31% more Ag). Both species showed DNA damage and severe histological changes in the presence of Ag. However, Ag(+) generally led to higher Ag accumulations (28%) and was more toxic. By the harvest day, about 14 ± 9% of the 360 µg L(-1) of AgNP exposure in the HRW oxidized to Ag(+) and may have contributed to the observed toxicities and bioaccumulations. The hepatopancreas (1.5-17.4 µg of Ag g(-1) of tissue) was identified as the best tissue-indicator of AgNP pollution, while the gills (4.5-22.0 µg g(-1)) and hepatopancreas (2.5-16.7 µg g(-1)) complementarily monitored the presence of Ag(+).


Assuntos
Astacoidea , Prata/toxicidade , Animais , Água Doce , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...