Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Nutr ; 154(5): 1549-1560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467279

RESUMO

BACKGROUND: Digestibility is a primary factor in determining the quality of dietary protein. Microbial protease supplementation may be a strategy for improving protein digestion and subsequent postprandial plasma amino acid availability. OBJECTIVES: To assess the effect of co-ingesting a microbial protease mixture with pea protein on postprandial plasma amino acid concentrations. DESIGN: A mixture of 3 microbial protease preparations (P3) was tested for proteolytic efficacy in an in vitro static simulation of gastrointestinal digestion. Subsequently, in a randomized, double-blind, placebo-controlled crossover trial, 24 healthy adults (27 ± 4 y; 12 females, 12 males) ingested 25 g pea protein isolate (20 g protein, 2.2 g fat) with either P3 or maltodextrin placebo (PLA). Blood samples were collected at baseline and throughout a 0‒5 h postprandial period and both the early (0-2 h) iAUC and total (0-5 h) iAUC were examined. RESULTS: Plasma glucose concentrations decreased in both conditions (P < 0.001), with higher concentrations after P3 ingestion compared with PLA (P < 0.001). Plasma insulin concentrations increased for both conditions (P < 0.001) with no difference between conditions (P = 0.331). Plasma total amino acid (TAA) concentrations increased over time (P < 0.001) with higher concentrations observed for P3 compared with PLA (P = 0.010) during the 0‒5 h period. There was a trend for elevated essential amino acid (EAA) concentrations for P3 compared with PLA (P = 0.099) during the 0‒5 h postprandial period but not for leucine (P = 0.282) or branched-chain amino acids (BCAA, P = 0.410). The early net exposure (0‒2 h iAUC) to amino acids (leucine, BCAA, EAA, and TAA) was higher for P3 compared with PLA (all, P < 0.05). CONCLUSIONS: Microbial protease co-ingestion increases plasma TAA concentrations (0-5 h) and leucine, BCAA, EAA, and TAA availability in the early postprandial period (0‒2 h) compared with ingesting pea protein with placebo in healthy adults.


Assuntos
Aminoácidos , Estudos Cross-Over , Suplementos Nutricionais , Proteínas de Ervilha , Período Pós-Prandial , Humanos , Adulto , Masculino , Feminino , Método Duplo-Cego , Aminoácidos/sangue , Aminoácidos/metabolismo , Adulto Jovem , Insulina/sangue , Glicemia/metabolismo , Peptídeo Hidrolases/sangue , Peptídeo Hidrolases/metabolismo , Digestão/efeitos dos fármacos , Pisum sativum
2.
J Appl Physiol (1985) ; 136(6): 1388-1399, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385186

RESUMO

Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.


Assuntos
Proteínas Musculares , Miofibrilas , Pós-Menopausa , Período Pós-Prandial , Treinamento Resistido , Proteínas do Soro do Leite , Humanos , Feminino , Pós-Menopausa/fisiologia , Pós-Menopausa/metabolismo , Treinamento Resistido/métodos , Pessoa de Meia-Idade , Período Pós-Prandial/fisiologia , Miofibrilas/metabolismo , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Proteínas do Soro do Leite/metabolismo , Músculo Esquelético/metabolismo , Descanso/fisiologia , Idoso , Fenilalanina/metabolismo , Biossíntese de Proteínas/fisiologia , Suplementos Nutricionais , Adulto , Exercício Físico/fisiologia , Fosforilação
3.
J Nutr ; 153(5): 1359-1372, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870539

RESUMO

BACKGROUND: Protein is most commonly consumed as whole foods as opposed to single nutrients. However, the food matrix regulation of the postprandial muscle protein synthetic response has received little attention. OBJECTIVES: The purpose of this study was to assess the effects of eating salmon (SAL) and of ingesting the same nutrients as an isolated mixture of crystalline amino acids and fish oil (ISO) on the stimulation of postexercise myofibrillar protein synthesis (MPS) and whole-body leucine oxidation rates in healthy young adults. METHODS: Ten recreationally active adults (24 ± 4 y; 5 men, 5 women) performed an acute bout of resistance exercise, followed by the ingestion of SAL or ISO in a crossover fashion. Blood, breath, and muscle biopsies were collected at rest and after exercise during primed continuous infusions of L-[ring-2H5]phenylalanine and L-[1-13C]leucine. All data are presented as means ± SD and/or mean differences (95% CIs). RESULTS: Postprandial essential amino acid (EAA) concentrations peaked earlier (P = 0.024) in the ISO group than those in the SAL group. Postprandial leucine oxidation rates increased over time (P < 0.001) and peaked earlier in the ISO group (1.239 ± 0.321 nmol/kg/min; 63 ± 25 min) than those in the SAL group (1.230 ± 0.561 nmol/kg/min; 105 ± 20 min; P = 0.003). MPS rates for SAL (0.056 ± 0.022 %/h; P = 0.001) and ISO (0.046 ± 0.025 %/h; P = 0.025) were greater than the basal rates (0.020 ± 0.011 %/h) during the 0- to 5-h recovery period, with no differences between conditions (P = 0.308). CONCLUSION: We showed that the postexercise ingestion of SAL or ISO stimulate postexercise MPS rates with no differences between the conditions. Thus, our results indicate that ingesting protein from SAL as a whole-food matrix is similarly anabolic to ISO in healthy young adults. This trial was registered at www. CLINICALTRIALS: gov as NCT03870165.


Assuntos
Proteínas Alimentares , Salmão , Animais , Feminino , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Leucina/farmacologia , Músculo Esquelético , Nutrientes , Período Pós-Prandial , Salmão/metabolismo
4.
J Ren Nutr ; 33(1): 181-192, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923111

RESUMO

OBJECTIVE: The goal of this investigation was to evaluate circulating and skeletal muscle inflammatory biomarkers between maintenance hemodialysis (MHD) and demographic-matched control subjects (CON) before and after ingestion of a protein-rich meal. DESIGN AND METHODS: CON (n = 8; 50 ± 2 years; 31 ± 1 kg/m2) and MHD patients (n = 8; 56 ± 5 years; 32 ± 2 kg/m2) underwent a basal blood draw and muscle biopsy and serial blood draws after the ingestion of a mixed meal on a nondialysis day. Plasma advanced glycation end products (AGEs) and markers of oxidation were assessed via liquid chromatography-tandem mass spectrometry before and after the meal (+240 min). Circulating inflammatory cytokines and soluble receptors for AGE (sRAGE) isoforms (endogenous secretory RAGEs and cleaved RAGEs) were determined before and after the meal (+240 min). Basal muscle was probed for inflammatory cytokines and protein expression of related signaling components (RAGE, Toll-like receptor 4, oligosaccharyltransferase subunit 48, TIR-domain-containing adapter-inducing interferon-ß, total IκBα, and pIκBα). RESULTS: Basal circulating AGEs were 7- to 343-fold higher (P < .001) in MHD than those in CON, but only MG-H1 increased in CON after the meal (P < .001). There was a group effect (MHD > CON) for total sRAGEs (P = .02) and endogenous secretory RAGEs (P < .001) and a trend for cleaved RAGEs (P=.09), with no meal effect. In addition, there was a group effect (MHD < CON; P < .05) for circulating fractalkine, interleukin (IL)10, IL17A, and IL1ß and a trend (P < .10) for IL6 and macrophage inflammatory protein 1 alpha, whereas tumor necrosis factor alpha was higher in MHD (P < .001). In muscle, Toll-like receptor 4 (P = .03), TIR-domain-containing adapter-inducing interferon-ß (P = .002), and oligosaccharyltransferase subunit 48 (P = .02) expression was lower in MHD than that in CON, whereas IL6 was higher (P = .01) and IL8 (P = .08) tended to be higher in MHD. CONCLUSION: Overall, MHD exhibited an exaggerated, circulating, and skeletal muscle inflammatory biomarker environment, and the meal did not appreciably affect the inflammatory status.


Assuntos
Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6 , Biomarcadores , Interferon beta , Ingestão de Alimentos
5.
J Appl Physiol (1985) ; 134(1): 116-129, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454678

RESUMO

Resistance training combined with adequate protein intake supports skeletal muscle strength and hypertrophy. These adaptations are supported by the action of muscle stem cells (MuSCs), which are regulated, in part, by fibro-adipogenic progenitors (FAPs) and circulating factors delivered through capillaries. It is unclear if middle-aged males and females have similar adaptations to resistance training at the cellular level. To address this gap, 27 (13 males, 14 females) middle-aged (40-64 yr) adults participated in 10 wk of whole body resistance training with dietary counseling. Muscle biopsies were collected from the vastus lateralis pre- and posttraining. Type II fiber cross-sectional area increased similarly with training in both sexes (P = 0.014). MuSC content was not altered with training; however, training increased PDGFRα+/CD90+ FAP content (P < 0.0001) and reduced PDGFRα+/CD90- FAP content (P = 0.044), independent of sex. The number of CD31+ capillaries per fiber also increased similarly in both sexes (P < 0.05). These results suggest that muscle fiber hypertrophy, stem/progenitor cell, and capillary adaptations are similar between middle-aged males and females in response to whole body resistance training.NEW & NOTEWORTHY We demonstrate that resistance training-induced increases in fiber hypertrophy, FAP content, and capillarization are similar between middle-aged males and females.


Assuntos
Treinamento Resistido , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hipertrofia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Músculo Quadríceps/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Treinamento Resistido/métodos
6.
Amino Acids ; 55(2): 253-261, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36474017

RESUMO

The activation of the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, by anabolic stimuli (such as muscle contraction or essential amino acids) involves its translocation to the cell periphery. Leucine is generally considered the most anabolic of amino acids for its ability to independently modulate muscle protein synthesis. However, it is currently unknown if free leucine impacts region-specific mTORC1-mediated phosphorylation events and protein-protein interactions. In this clinical trial (NCT03952884; registered May 16, 2019), we used immunofluorescence methods to investigate the role of dietary leucine on the postprandial regulation of mTORC1 and ribosomal protein S6 (RPS6), an important downstream readout of mTORC1 activity. Eight young, healthy, recreationally active males (n = 8; 23 ± 3 yrs) ingested 2 g of leucine with vastus lateralis biopsies collected at baseline, 30, 60, and 180 min postprandial. Leucine promoted mTOR translocation to the periphery (~ 18-29%; p ≤ 0.012) and enhanced mTOR localization with the lysosome (~ 16%; both p = 0.049) at 30 and 60 min post-feeding. p-RPS6Ser240/244 staining intensity, a readout of mTORC1 activity, was significantly elevated at all postprandial timepoints in both the total fiber (~ 14-30%; p ≤ 0.032) and peripheral regions (~ 16-33%; p ≤ 0.014). Additionally, total and peripheral p-RPS6Ser240/244 staining intensity at 60 min was positively correlated (r = 0.74, p = 0.036; r = 0.80, p = 0.016, respectively) with rates of myofibrillar protein synthesis over 180 min. The ability of leucine to activate mTORC1 in peripheral regions favors an enhanced rate of MPS, as this is the intracellular space thought to be replete with the cellular machinery that facilitates this anabolic process.


Assuntos
Músculo Esquelético , Serina-Treonina Quinases TOR , Masculino , Humanos , Leucina/metabolismo , Fosforilação , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos
7.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364934

RESUMO

ß-Hydroxy-ß-methylbutyrate (HMB), a leucine metabolite, can increase skeletal muscle size and function. However, HMB may be less effective at improving muscle function in people with insufficient Vitamin D3 (25-OH-D < 30 ng/mL) which is common in middle-aged and older adults. Therefore, we tested the hypothesis that combining HMB plus Vitamin D3 (HMB + D) supplementation would improve skeletal muscle size, composition, and function in middle-aged women. In a double-blinded fashion, women (53 ± 1 yrs, 26 ± 1 kg/m2, n = 43) were randomized to take placebo or HMB + D (3 g Calcium HMB + 2000 IU D per day) during 12 weeks of sedentary behavior (SED) or resistance exercise training (RET). On average, participants entered the study Vitamin D3 insufficient while HMB + D increased 25-OH-D to sufficient levels after 8 and 12 weeks. In SED, HMB + D prevented the loss of arm lean mass observed with placebo. HMB + D increased muscle volume and decreased intermuscular adipose tissue (IMAT) volume in the thigh compared to placebo but did not change muscle function. In RET, 12-weeks of HMB + D decreased IMAT compared to placebo but did not influence the increase in skeletal muscle volume or function. In summary, HMB + D decreased IMAT independent of exercise status and may prevent the loss or increase muscle size in a small cohort of sedentary middle-aged women. These results lend support to conduct a longer duration study with greater sample size to determine the validity of the observed positive effects of HMB + D on IMAT and skeletal muscle in a small cohort of middle-aged women.


Assuntos
Colecalciferol , Força Muscular , Humanos , Pessoa de Meia-Idade , Feminino , Idoso , Colecalciferol/farmacologia , Suplementos Nutricionais , Músculo Esquelético , Método Duplo-Cego
8.
Brain Plast ; 8(1): 19-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448041

RESUMO

Although muscular strength has been linked to greater cognitive function across different cognitive domains, the mechanism(s) through which this occurs remain(s) poorly understood. Indeed, while an emerging body of literature suggests peripheral myokines released from muscular contractions may play a role in this relationship, additional research is needed to understand this link. Accordingly, this study sought to compare the influences of a particular myokine, Cathepsin B (CTSB), and muscular strength on hippocampal-dependent relational memory and cognitive control in 40 adults (age = 50.0±7.3 yrs). Overnight fasted venous blood draws were taken to assess plasma CTSB and muscular strength was assessed as maximal isokinetic strength testing using a Biodex dynamometer. Cognitive performance was assessed using a Spatial Reconstruction Task to assess relational memory and a modified Flanker task to assess cognitive control. Neuroelectric function for cognitive control was assessed using event-related potentials (ERPs) recorded during the Flanker task. Initial bivariate correlational analyses revealed that neither sex, age, lean body mass, or muscular strength was associated with CTSB. However, CTSB was inversely associated with reaction time and fractional peak latency of the P3 component of the Flanker task. Muscular strength was also inversely associated with reaction time and positively associated with relational memory performance. However, the influence of muscular strength on relational memory did not persist following adjustment for covariates. Greater circulating CTSB was selectively associated with greater cognitive control as well as faster information processing speed. These findings are the first to link circulating CTSB to both cognitive control and neuroelectric function. Future intervention studies are needed to examine the effects of changes in muscular strength, circulating myokines, and different domains of cognitive function.

9.
Int J Sport Nutr Exerc Metab ; 32(6): 446-452, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007881

RESUMO

Creatine (Cr) supplementation is a well-established strategy to enhance gains in strength, lean body mass, and power from a period of resistance training. However, the effectiveness of creatyl-L-leucine (CLL), a purported Cr amide, is unknown. Therefore, the purpose of this study was to assess the effects of CLL on muscle Cr content. Twenty-nine healthy men (n = 17) and women (n = 12) consumed 5 g/day of either Cr monohydrate (n = 8; 28.5 ± 7.3 years, 172.1 ± 11.0 cm, 76.6 ± 10.7 kg), CLL (n = 11; 29.2 ± 9.3 years, 170.3 ± 10.5 cm, 71.9 ± 14.5 kg), or placebo (n = 10; 30.3 ± 6.9 years, 167.8 ± 9.9 cm, 69.9 ± 11.1 kg) for 14 days in a randomized, double-blind design. Participants completed three bouts of supervised resistance exercise per week. Muscle biopsies were collected before and after the intervention for quantification of muscle Cr. Cr monohydrate supplementation which significantly increased muscle Cr content with 14 days of supplementation. No changes in muscle Cr were observed for the placebo or CLL groups. Cr monohydrate supplementation is an effective strategy to augment muscle Cr content while CLL is not.


Assuntos
Creatina , Leucemia Linfocítica Crônica de Células B , Masculino , Adulto Jovem , Feminino , Humanos , Leucina/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Músculo Esquelético/fisiologia , Suplementos Nutricionais , Composição Corporal/fisiologia , Método Duplo-Cego , Amidas/metabolismo , Amidas/farmacologia , Força Muscular
10.
Am J Physiol Cell Physiol ; 323(2): C595-C605, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848618

RESUMO

Satellite cells are required for muscle regeneration, remodeling, and repair through their activation, proliferation, and differentiation; however, how dietary factors regulate this process remains poorly understood. The L-type amino acid transporter 1 (LAT1) transports amino acids, such as leucine, into mature myofibers, which then stimulate protein synthesis and anabolic signaling. However, whether LAT1 is expressed on myoblasts and is involved in regulating myogenesis is unknown. The aim of this study was to characterize the expressional and functional relevance of LAT1 during different stages of myogenesis and in response to growth and atrophic conditions in vitro. We determined that LAT1 is expressed by C2C12 and human primary myoblasts, and its gene expression is lower during differentiation (P < 0.05). Pharmacological inhibition and genetic knockdown of LAT1 impaired myoblast viability, differentiation, and fusion (all P < 0.05). LAT1 protein content in C2C12 myoblasts was not significantly altered in response to different leucine concentrations in cell culture media or in two in vitro atrophy models. However, LAT1 content was decreased in myotubes under atrophic conditions in vitro (P < 0.05). These findings indicate that LAT1 is stable throughout myogenesis and in response to several in vitro conditions that induce muscle remodeling. Further, amino acid transport through LAT1 is required for normal myogenesis in vitro.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Desenvolvimento Muscular , Aminoácidos/metabolismo , Células Cultivadas , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/metabolismo , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo
11.
J Appl Physiol (1985) ; 133(3): 572-584, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834627

RESUMO

Skeletal muscle aging is a multidimensional pathology of atrophy, reduced strength, and oxidative damage. Although some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined. In an exploratory investigation, we examined how strength gains with resistance training relate to regulators of both muscle mass and oxidative function in middle-aged adults. Forty-one middle-aged adults [18 male (M), 23 female (F); 50 ± 7 yr; 27.8 ± 3.7 kg/m2; means ± SD] participated in a 10-wk resistance training intervention. Muscle biopsies and plasma were sampled at baseline and postintervention. High-resolution fluo-respirometry was performed on a subset of muscle tissue. Apelin signaling (plasma apelin, P = 0.002; Apln mRNA, P < 0.001; apelin receptor mRNA Aplnr, P = 0.001) increased with resistance training. Muscle Vdr mRNA (P = 0.007) and Smox mRNA (P = 0.027) were also upregulated after the intervention. Mitochondrial respiratory capacity increased (Vmax, oxidative phosphorylation, and uncoupled electron transport system, P < 0.050), yet there were no changes in ADP sensitivity (Km P = 0.579), hydrogen peroxide emission (P = 0.469), nor transcriptional signals for mitochondrial biogenesis (nuclear respiratory factor 2, Gapba P = 0.766) and mitofusion (mitochondrial dynamin-like GTPase, Opa1 P = 0.072). Muscular strength with resistance training positively correlated to Apln, Aplnr, Vdr, and Smox transcriptional adaptations, as well as mitochondrial respiratory capacity (unadjusted P < 0.050, r = 0.400-0.781). Further research is required to understand the interrelationships of these targets with aged muscle phenotype.NEW & NOTEWORTHY Although some therapeutic targets may ameliorate hypertrophic and oxidative dysfunction with muscle aging in preclinical models, their responsiveness in human muscle remains unclear. We demonstrated that resistance training concurrently upregulated therapeutic targets of muscle aging and mitochondrial respiratory capacity, which positively correlated to strength gains. Specifically, we are the first to demonstrate that apelin and spermine oxidase are upregulated with resistance training in humans. Our work corroborates preclinical observations, with future work required for clinical efficacy.


Assuntos
Mitocôndrias , Força Muscular , Treinamento Resistido , Adulto , Apelina , Receptores de Apelina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , RNA Mensageiro
12.
J Physiol ; 599(18): 4287-4307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320223

RESUMO

KEY POINTS: The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults. The stimulation of myofibrillar, mitochondrial or collagen protein synthesis rates during 0-3 weeks of resistance training is not further enhanced by a higher protein diet. These results show that moderate protein diets are sufficient to support the skeletal muscle adaptive response during the early phase of a resistance training programme. ABSTRACT: Protein ingestion augments muscle protein synthesis (MPS) rates acutely after resistance exercise and can offset age-related loss in muscle mass. Skeletal muscle contains a variety of protein pools, such as myofibrillar (contractile), mitochondrial (substrate oxidation), and collagen (structural support) proteins, and the sensitivity to nutrition and exercise seems to be dependent on the major protein fraction studied. However, it is unknown how free-living conditions with high dietary protein density and habitual resistance exercise mediates muscle protein subfraction synthesis. Therefore, we investigated the effect of moderate (MOD: 1.06 ± 0.22 g kg-1  day-1 ) or high (HIGH: 1.55 ± 0.25 g kg-1  day-1 ) protein intake on daily MPS rates within the myofibrillar (MyoPS), mitochondrial (MitoPS) and collagen (CPS) protein fractions in middle-aged men and women (n = 20, 47 ± 1 years, BMI 28 ± 1 kg m-2 ) during the early phase (0-3 weeks) of a dietary counselling-controlled resistance training programme. Participants were loaded with deuterated water, followed by daily maintenance doses throughout the intervention. Muscle biopsies were collected at baseline and after weeks 1, 2 and 3. MyoPS in the HIGH condition remained constant (P = 1.000), but MOD decreased over time (P = 0.023). MitoPS decreased after 0-3 weeks when compared to 0-1 week (P = 0.010) with no effects of protein intake (P = 0.827). A similar decline with no difference between groups (P = 0.323) was also observed for CPS (P = 0.007). Our results demonstrated that additional protein intake above moderate amounts does not potentiate the stimulation of longer-term MPS responses during the early stage of resistance training adaptations in middle-aged adults.


Assuntos
Treinamento Resistido , Idoso , Proteínas Alimentares , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares , Músculo Esquelético
13.
J Appl Physiol (1985) ; 131(3): 1111-1122, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323596

RESUMO

Leucine is regarded as an anabolic trigger for the mTORC1 pathway and the stimulation muscle protein synthesis rates. More recently, there has been an interest in underpinning the relevance of branched-chain amino acid (BCAA)-containing dipeptides and their intact absorption into circulation to regulate muscle anabolic responses. We investigated the effects of dileucine and leucine ingestion on postprandial muscle protein turnover. Ten healthy young men (age: 23 ± 3 yr) consumed either 2 g of leucine (LEU) or 2 g of dileucine (DILEU) in a randomized crossover design. The participants underwent repeated blood and muscle biopsy sampling during primed continuous infusions of l-[ring-13C6]phenylalanine and l-[15N]phenylalanine to determine myofibrillar protein synthesis (MPS) and mixed muscle protein breakdown rates (MPB), respectively. LEU and DILEU similarly increased plasma leucine net area under the curve (AUC; P = 0.396). DILEU increased plasma dileucine AUC to a greater extent than LEU (P = 0.013). Phosphorylation of Akt (P = 0.002), rpS6 (P < 0.001), and p70S6K (P < 0.001) increased over time under both LEU and DILEU conditions. Phosphorylation of 4E-BP1 (P = 0.229) and eEF2 (P = 0.999) did not change over time irrespective of condition. Cumulative (0-180 min) MPS increased in DILEU (0.075 ± 0.032%·h-1), but not in LEU (0.047 ± 0.029%·h-1; P = 0.023). MPB did not differ between LEU (0.043 ± 0.030%·h-1) and DILEU conditions (0.051 ± 0.027%·h-1; P = 0.659). Our results showed that dileucine ingestion elevated plasma dileucine concentrations and muscle protein turnover by stimulating MPS in young men.NEW & NOTEWORTHY The role of dipeptides as anabolic agents remains unresolved in humans. We show that the ingestion of 2 g dileucine increased plasma dileucine concentrations and resulted in an enhancement of muscle protein turnover by stimulating an increase in muscle protein synthesis rates in healthy young males. The ingestion of 2 g leucine, however, did not stimulate an increase in muscle protein turnover. Our work provides the first insights into the effects of dipeptides on human protein metabolism.


Assuntos
Proteínas Musculares , Músculo Esquelético , Adulto , Ingestão de Alimentos , Humanos , Leucina , Masculino , Período Pós-Prandial , Adulto Jovem
14.
Am J Physiol Endocrinol Metab ; 320(5): E900-E913, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682457

RESUMO

Protein intake above the recommended dietary allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ∼1.0 g·kg-1·day-1) or higher (HIGH: ∼1.6 g·kg-1·day-1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. In all, 50 middle-aged adults (age: 50 ± 8 yr, BMI: 27.2 ± 4.1 kg/m2) were randomized to either MOD or HIGH protein intake during a 10-wk resistance training program (3 × wk). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate postexercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P < 0.050). There was a main effect of time for LBM (P < 0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P < 0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.NEW & NOTEWORTHY Our research evaluates the efficacy of higher in comparison with moderate animal-based protein intake on resistance exercise training-induced muscle strength, clinical biomarkers, and gut microbiota in middle-aged adults through a dietary counseling-controlled intervention. Higher protein intake did not potentiate training adaptations, nor did the intervention effect disease biomarkers. Both diet and exercise modified gut microbiota composition. Collectively, moderate amounts of high-quality, animal-based protein is sufficient to promote resistance exercise adaptations at the onset of aging.


Assuntos
Proteínas Alimentares/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Treinamento Resistido , Adulto , Fatores Etários , Dieta , Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Comportamento Alimentar/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Treinamento Resistido/métodos , Fatores de Tempo
15.
J Physiol ; 598(24): 5701-5716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32969494

RESUMO

KEY POINTS: Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and ß-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. ABSTRACT: Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m-2 ) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m-2 ) received primed continuous l-[ring-2 H5 ]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P < 0.01). Rac1 and Akt showed no difference between groups for the human trial. Rac1 deletion in the Rac1 mKO model did not alter the expression of integrin-associated proteins. Phenylalanine rates of appearance and disappearance, as well as metabolic clearance rates, were lower in the MHD group at 30 and 60 min post meal ingestion compared to controls (P < 0.05). Both groups showed similar levels of insulin sensitivity and ß-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in MHD patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients.


Assuntos
Resistência à Insulina , Integrinas , Humanos , Pessoa de Meia-Idade , Músculo Esquelético , Fosfatidilinositol 3-Quinases , Diálise Renal
16.
Metabolism ; 102: 153996, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678069

RESUMO

BACKGROUND: We have recently shown that a novel signalling kinase, inositol hexakisphosphate kinase 1 (IP6K1), is implicated in whole-body insulin resistance via its inhibitory action on Akt. Insulin and insulin like growth factor 1 (IGF-1) share many intracellular processes with both known to play a key role in glucose and protein metabolism in skeletal muscle. AIMS: We aimed to compare IGF/IP6K1/Akt signalling and the plasma proteomic signature in individuals with a range of BMIs after ingestion of lean meat. METHODS: Ten lean [Body mass index (BMI) (in kg/m2): 22.7 ±â€¯0.4; Homeostatic model assessment of insulin resistance (HOMAIR): 1.36 ±â€¯0.17], 10 overweight (BMI: 27.1 ±â€¯0.5; HOMAIR: 1.25 ±â€¯0.11), and 10 obese (BMI: 35.9 ±â€¯1.3; HOMAIR: 5.82 ±â€¯0.81) adults received primed continuous L-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected at 0 min (post-absorptive), 120 min and 300 min relative to the ingestion of 170 g pork loin (36 g protein and 5 g fat) to examine skeletal muscle protein signalling, plasma proteomic signatures, and whole-body phenylalanine disappearance rates (Rd). RESULTS: Phenylalanine Rd was not different in obese compared to lean individuals at all time points and was not responsive to a pork ingestion (basal, P = 0.056; 120 & 300 min, P > 0.05). IP6K1 was elevated in obese individuals at 120 min post-prandial vs basal (P < 0.05). There were no acute differences plasma proteomic profiles between groups in the post-prandial state (P > 0.05). CONCLUSIONS: These data demonstrate, for the first time that muscle IP6K1 protein content is elevated after lean meat ingestion in obese adults, suggesting that IP6K1 may be contributing to the dysregulation of nutrient uptake in skeletal muscle. In addition, proteomic analysis showed no differences in proteomic signatures between obese, overweight or lean individuals.


Assuntos
Proteínas Sanguíneas/metabolismo , Ingestão de Alimentos/fisiologia , Carne , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteoma/metabolismo , Adulto , Fatores Etários , Proteínas Sanguíneas/análise , Índice de Massa Corporal , Gorduras na Dieta/farmacologia , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/patologia , Fosfotransferases (Aceptor do Grupo Fosfato)/análise , Período Pós-Prandial/fisiologia , Proteoma/análise , Magreza/sangue , Magreza/metabolismo , Magreza/patologia , Adulto Jovem
17.
Med Sci Sports Exerc ; 52(5): 1022-1030, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31703023

RESUMO

During a traditional set configuration of resistance exercise (TRD), characterized by a continuous completion of repetitions, a decrease in power output tends to occur throughout a set of repetitions. Inclusion of intraset rest, otherwise known as a cluster set configuration (CLU), counteracts this power decline. However, the effect of a CLU configuration on postexercise myofibrillar protein synthesis rates (MPS) and anabolic signaling has not been investigated. PURPOSE: We aimed to determine if any mechanistic differences exist between TRD and CLU signaling events associated with muscle anabolism. METHODS: In randomized crossover trials, eight resistance-trained participants (23 ± 1 yr, 81 ± 4.7 kg, body fat: 18% ± 1.9%; 1 repetition maximum [1RM], 150 ± 9.1 kg) performed an acute bout of CLU (4 sets × (2 × 5) repetitions, 30-s intraset rest, 90-s interset rest) and TRD (4 sets × 10 repetitions, 120-s interset rest) barbell back squats at approximately 70% 1RM with total volume load equated during primed continuous L-[ring-C6]phenylalanine infusions. Blood and muscle biopsy samples were collected at rest and after exercise at 0, 2, and 5 h. RESULTS: There was no difference in postexercise MPS between the CLU and TRD condition (P > 0.05) and no changes in phosphorylation of mTORC1 downstream targets (p70S6K and 4EBP1). Total and phosphorylated yes-associated protein on Ser127 transiently increased (P < 0.01) immediately after exercise (t = 0) in CLU (~2.1-fold) and TRD condition (~2.2-fold). CONCLUSIONS: Our results show that CLU is a viable anabolic option by preserving power output with similar MPS stimulation when compared with the TRD condition in trained young adults.


Assuntos
Proteínas Musculares/biossíntese , Miofibrilas/metabolismo , Treinamento Resistido/métodos , Descanso , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Aminoácidos/sangue , Glicemia/metabolismo , Estudos Cross-Over , Feminino , Humanos , Insulina/sangue , Ácido Láctico/sangue , Sistema de Sinalização das MAP Quinases , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/biossíntese , Percepção/fisiologia , Fosforilação , Esforço Físico/fisiologia , Fatores de Transcrição/biossíntese , Proteínas de Sinalização YAP , Adulto Jovem
18.
J Appl Physiol (1985) ; 127(6): 1792-1801, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725358

RESUMO

The anabolic action of "fast" whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine tracer infusions and ingested 38 g of l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled milk protein concentrate. A total of ∼27 ± 4 (∼10 g) and ∼31 ± 1% (∼12 g) of dietary protein-derived amino acids were released in circulation between 0 and 120 min and 120-300 min, respectively, of the postprandial period. l-[ring-2H5]phenylalanine-based MPS increased above basal (0.025 ± 0.008%/h) by ∼75% (0.043 ± 0.009%/h; P = 0.05) between 0 and 120 min and by ∼86% (0.046 ± 0.004%/h; P = 0.02) between 120 and 300 min, respectively. l-[1-13C]leucine-based MPS increased above basal (0.027 ± 0.002%/h) by ∼72% (0.051 ± 0.016%/h; P = 0.10) between 0 and 120 min and by ∼62% (0.047 ± 0.004%/h; P = 0.001) between 120 and 300 min, respectively. Myofibrillar protein-bound l-[1-13C]phenylalanine increased over time (P < 0.001) and equaled 0.004 ± 0.001, 0.008 ± 0.002, 0.017 ± 0.004, and 0.020 ± 0.003 mole percent excess at 60, 120, 180, and 300 min, respectively, of the postprandial period. Milk protein ingestion increased mTORC1 phosphorylation at 120, 180, and 300 min of the postprandial period (all P < 0.05). Our results show that ingestion of 38 g of milk protein results in sustained increases in MPS throughout a 5-h postprandial period in healthy young men.NEW & NOTEWORTHY The stimulation of muscle protein synthesis after whey protein ingestion is short-lived due to its transient systemic appearance of amino acids. Our study characterized the muscle anabolic response to a protein source that results in a more gradual release of amino acids into circulation. Our work demonstrates that a sustained increase in postprandial plasma amino acid availability after milk protein ingestion results in a prolonged stimulation of muscle protein synthesis rates in healthy young men.


Assuntos
Ingestão de Alimentos/fisiologia , Proteínas do Leite/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Período Pós-Prandial/fisiologia , Biossíntese de Proteínas/fisiologia , Adulto , Aminoácidos/metabolismo , Glicemia/metabolismo , Glicemia/fisiologia , Caseínas/metabolismo , Dieta , Proteínas Alimentares/metabolismo , Humanos , Leucina/metabolismo , Masculino , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Fenilalanina/metabolismo , Proteínas do Soro do Leite/metabolismo , Adulto Jovem
19.
Kidney Int Rep ; 3(6): 1403-1415, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450467

RESUMO

INTRODUCTION: Skeletal muscle loss is common in patients with renal failure who receive maintenance hemodialysis (MHD) therapy. Regular ingestion of protein-rich meals are recommended to help offset muscle protein loss in MHD patients, but little is known about the anabolic potential of this strategy. METHODS: Eight MHD patients (age: 56 ± 5 years; body mass index [BMI]: 32 ± 2 kg/m2) and 8 nonuremic control subjects (age: 50 ± 2 years: BMI: 31 ± 1 kg/m2) received primed continuous L-[ring-2H5]phenylalanine and L-[1-13C]leucine infusions with blood and muscle biopsy sampling on a nondialysis day. Participants consumed a mixed meal (546 kcal; 20-g protein, 59-g carbohydrates, 26-g fat) with protein provided as L-[5,5,5-2H3]leucine-labeled eggs. RESULTS: Circulating dietary amino acid availability was reduced in MHD patients (41 ± 5%) versus control subjects (61 ± 4%; P = 0.03). Basal muscle caspase-3 protein content was elevated (P = 0.03) and large neutral amino acid transporter 1 (LAT1) protein content was reduced (P = 0.02) in MHD patients versus control subjects. Basal muscle protein synthesis (MPS) was ∼2-fold higher in MHD patients (0.030 ± 0.005%/h) versus control subjects (0.014 ± 0.003%/h) (P = 0.01). Meal ingestion failed to increase MPS in MHD patients (absolute change from basal: 0.0003 ± 0.007%/h), but stimulated MPS in control subjects (0.009 ± 0.002%/h; P = 0.004). CONCLUSIONS: MHD patients demonstrated muscle anabolic resistance to meal ingestion. This blunted postprandial MPS response in MHD patients might be related to high basal MPS, which results in a stimulatory ceiling effect and/or reduced plasma dietary amino acid availability after mixed-meal ingestion.

20.
Am J Physiol Cell Physiol ; 315(4): C537-C543, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133322

RESUMO

We have recently demonstrated that whole egg ingestion induces a greater muscle protein synthetic (MPS) response when compared with isonitrogenous egg white ingestion after resistance exercise in young men. Our aim was to determine whether whole egg or egg white ingestion differentially influenced colocalization of key regulators of mechanistic target of rapamycin complex 1 (mTORC1) as means to explain our previously observed divergent postexercise MPS response. In crossover trials, 10 healthy resistance-trained men (21 ± 1 yr; 88 ± 3 kg; body fat: 16 ± 1%; means ± SE) completed lower body resistance exercise before ingesting whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat). Muscle biopsies were obtained before exercise and at 120 and 300 min after egg ingestion to assess, by immunofluorescence, protein colocalization of key anabolic signaling molecules. After resistance exercise, tuberous sclerosis 2-Ras homolog enriched in brain (Rheb) colocalization decreased ( P < 0.01) at 120 and 300 min after whole egg and egg white ingestion with concomitant increases ( P < 0.01) in mTOR-Rheb colocalization. After resistance exercise, mTOR-lysosome-associated membrane protein 2 (LAMP2) colocalization significantly increased at 120 and 300 min only after whole egg ingestion ( P < 0.01), and mTOR-LAMP2 colocalization correlated with rates of MPS at rest and after exercise ( r = 0.40, P < 0.05). We demonstrated that the greater postexercise MPS response with whole egg ingestion is related in part to an enhanced recruitment of mTORC1-Rheb complexes to the lysosome during recovery. These data suggest nonprotein dietary factors influence the postexercise regulation of mRNA translation in human skeletal muscle.


Assuntos
Proteínas do Ovo/metabolismo , Exercício Físico/fisiologia , Lisossomos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Animais , Proteínas Alimentares/metabolismo , Ingestão de Alimentos/fisiologia , Ovos , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Treinamento Resistido/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA