Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sports Biomech ; : 1-16, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767326

RESUMO

Individuals with anterior cruciate ligament reconstruction (ACLR) utilise different landing biomechanics between limbs, but previous analyses have not considered the continuous or simultaneous joint motion that occurs during landing and propulsion. The purpose of this study was to compare sagittal plane ankle/knee and knee/hip coordination patterns as well as ankle, knee, and hip angles and moments and vertical ground reaction force (vGRF) between the ACLR and uninjured limbs during landing and propulsion. Fifteen females and thirteen males performed a drop vertical jump from a 30 cm box placed half their height from force platforms. Coordination was compared using a modified vector coding technique and binning analysis. Kinematics and kinetics were time normalised for waveform analyses. Coordination was not different between limbs. The ACLR limb had smaller dorsiflexion angles from 11 to 16% of landing and 24 to 75% of landing and propulsion, knee flexion moments from 5 to 15% of landing, 20 to 31% of landing, and 35 to 91% of landing and propulsion, and vGRF from 92 to 94% of propulsion compared with the uninjured limb. The ACLR limb exhibited smaller dorsiflexion angles to potentially reduce the knee joint moment arm and mitigate the eccentric and concentric demands on the ACLR knee during landing and propulsion, respectively.

2.
J Sports Sci ; 42(2): 169-178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38423997

RESUMO

Force attenuation during landing requires coordinated motion of the ankle, knee, hip, and trunk, and strategies may differ between sexes. Sagittal plane coordination of the ankle/knee, knee/hip, and knee/trunk, and lower extremity and trunk kinematics and kinetics was compared throughout landing between 28 males and 28 females. Coordination was assessed with a modified vector coding technique and binning analysis. Total support moments (TSM), each joint's percent contribution, and timing of the TSM were compared. Females landed with less isolated knee flexion in the ankle/knee, knee/hip, and knee/trunk couplings, but more simultaneous ankle/knee flexion, less simultaneous knee flexion/hip extension, and more simultaneous trunk/knee flexion. Females landed with larger plantarflexion angles from 0-16% and smaller trunk flexion angles from 0-78%. In females, absolute TSM were larger from 0-6% and smaller from 42-100%, and normalized TSM were larger from 0-8% and 26-42%. Females had greater ankle contribution to the TSM from 14-15% and 29-35%, smaller absolute peak TSM, and the peak TSM occurred earlier. Females compensated for less isolated knee flexion with greater simultaneous ankle/knee flexion early in landing and knee/trunk flexion later in landing. Coordination and TSM differences may influence force attenuation strategies and have implications for knee injury disparity between sexes.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Masculino , Humanos , Feminino , Extremidade Inferior , Articulação do Joelho , Joelho , Fenômenos Biomecânicos , Movimento
3.
J Orthop Res ; 42(2): 349-359, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37772457

RESUMO

The purpose was to (1) compare the effect of a walking bout on femoral cartilage deformation between limbs with and without anterior cruciate ligament reconstruction (ACLR) and (2) examine the association between gait kinetics and the magnitude of cartilage deformation. A total of 30 individuals with primary unilateral ACLR completed this study [14 male, 16 female; age = 22.57 (3.78) years; body mass index (BMI) = 25.88 (5.68) kg/m2 ; time since ACLR = 61.00 (16.43) months]. Overground walking biomechanics were assessed on day 1, and a 30-min walking bout or 30-min resting bout (control) were completed on days 2 and 3 (counterbalanced order). Femoral cartilage thickness was measured using ultrasound before, immediately following, and 30-min following each intervention. Linear mixed effects models compared the effect of walking on cartilage thickness between the ACLR and contralateral limbs after adjusting for sex, BMI, speed, and the number of steps. Stepwise regression examined the association between the external knee flexion and adduction moments and cartilage deformation following walking. There was a significant limb × time interaction for medial cartilage thickness. Post hoc analyses indicated that cartilage thickness decreased immediately following walking in the contralateral but not ACLR limb. Main effects of limb were observed for medial, central, and lateral cartilage thickness indicating thicker cartilage in the ACLR compared with contralateral limb. A higher knee adduction moment was associated with greater cartilage deformation in the ACLR limb. Femoral cartilage in the ACLR limb exhibited a less dynamic response to walking than the uninvolved limb, which may be due to habitual underloading during gait.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Caminhada/fisiologia , Articulação do Joelho/fisiologia , Marcha/fisiologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Fenômenos Biomecânicos
4.
Front Sports Act Living ; 5: 1268292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780121

RESUMO

Introduction: Running related injuries (RRI) are common, but factors contributing to running performance and RRIs are not commonly compared between different types of runners. Methods: We compared running biomechanics previously linked to RRIs and performance between 27 recreational and 35 collegiate runners. Participants completed 5 overground running trials with their dominant limb striking a force plate, while outfitted with standardised footwear and 3-dimensional motion capture markers. Results: Post hoc comparisons revealed recreational runners had a larger vertical loading rate (194.5 vs. 111.5 BW/s, p < 0.001) and shank angle (6.80 vs. 2.09, p < 0.001) compared with the collegiate runners who demonstrated greater vertical impulse (0.349 vs. 0.233 BWs, p < 0.001), negative impulse (-0.022 vs. -0.013 BWs, p < 0.001), positive impulse (0.024 vs. 0.014 BWs, p < 0.001), and propulsive force (0.390 vs. 0.333 BW, p = 0.002). Adjusted for speed, collegiate runners demonstrated greater total support moment (TSM), plantar flexor moment, knee extensor moment, hip extensor moment, and had greater proportional plantar flexor moment contribution and less knee extensor moment contribution to the TSM compared with recreational runners. Unadjusted for speed, collegiate runners compared with recreational had greater TSM and plantar flexor moment but similar joint contributions to the TSM. Discussion: Greater ankle joint contribution may be more efficient and allow for greater capacity to increase speed. Improving plantarflexor function during running provides a strategy to improve running speed among recreational runners. Moreover, differences in joint kinetics and ground reaction force characteristics suggests that recreational and collegiate runners may experience different types of RRI.

5.
Cartilage ; : 19476035231205682, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846037

RESUMO

BACKGROUND: Articular cartilage is important for knee function and can be imaged using ultrasound. The purpose was to compare femoral cartilage thickness and echo intensity (EI) measured at 90° and 140° of knee flexion and between limbs in a cohort with unilateral anterior cruciate ligament reconstruction (ACLR). We also examined associations between gait biomechanics and cartilage outcomes. METHODS: Twenty-seven individuals with primary unilateral ACLR participated (12 men, 15 women; age = 22.3 ± 3.8 years; time since ACLR = 71.2 ± 47.2 months). Ultrasound was used to obtain femoral cartilage measurements. Gait outcomes included peak KFA (knee flexion angle) and peak external knee flexion moment (KFM). Cartilage outcomes were compared using a 2 (position) × 2 (limb) repeated measures ANOVA (analysis of variance). Gait and cartilage associations were assessed using linear regression. FINDINGS: There were no position × limb interactions for any cartilage outcome (all P > 0.05). Medial (P = 0.038) and central cartilage (P < 0.001) were thicker, whereas central (P = 0.029) and lateral cartilage EI (P = 0.003) were lower when measured at 90° than those at 140° of knee flexion. Medial cartilage was thicker in the ACLR than that in the contralateral limb (P = 0.016). A larger KFM was associated with thicker medial cartilage (ΔR2 = 0.146, P = 0.021) and central cartilage (ΔR2 = 0.159, P = 0.039) measured at 140° of knee flexion in the ACLR limb but not at 90°. INTERPRETATION: Findings suggest that imaging position influences cartilage thickness and EI measurements in individuals with ACLR and should be considered in study designs and clinical evaluation. A greater KFM was associated with thicker cartilage within specific portions of the distal femur.

6.
Hum Mov Sci ; 91: 103125, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515958

RESUMO

BACKGROUND: Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder affecting multiple functional parameters. This study examined postural stability and associated gait and neuromuscular factors in young adults with PWS. METHODS: Participants included 10 adults with PWS [7 M/3F; Body Fat % 40.61 ± 7.79]; ten normal weight (NW) adults [7 M/3F; Body Fat % 23.42 ± 7.0]; ten obese (OB) adults [7 M/3F; Body Fat % 42.40 ± 5.62]. Participants completed the Sensory Organization Test (SOT)®. Condition (C) specific and a composite equilibrium score (CES) were calculated (maximum = 100). Quadriceps strength was assessed using an isokinetic dynamometer. Three-dimensional gait analyses were completed along a 10 m walkway using a motion capture system and two force plates. A gait stability ratio (GSR) was computed from gait speed and step length (steps/m). RESULTS: The PWS group had lower scores for C1, C3, C4 and CES compared to the NW (p < .039 for all) and lower scores for C4 and CES than the OB (p < .019 for both) groups, respectively. In C5 (eyes closed, sway-referenced support) and C6 (sway-referenced vision and support), 33.3% of participants with PWS fell during the first trial in both conditions (X2 [2] 7.436, p = .024) and (X2 [2] 7.436, p = .024) but no participant in the other groups fell. Those with PWS showed higher GSR than participants with NW (p = .005) and those with obesity (p = .045). CONCLUSION: Individuals with PWS had more difficulty maintaining standing balance when relying on information from the somatosensory (C3), visual-vestibular (C4) and vestibular systems (C5, C6). A more stable walk was related to shorter steps, slower velocity and reduced peak quadriceps torque. Participation in multisensory activities that require appropriate prioritization of sensory system(s) input for controlling balance in altered sensory environments should be routinely included. In addition, exercises targeting muscular force and power should be included as part of exercise programming in PWS.


Assuntos
Síndrome de Prader-Willi , Adulto Jovem , Humanos , Obesidade , Marcha , Caminhada , Exercício Físico
7.
Bone Rep ; 19: 101700, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37520935

RESUMO

Introduction: The incidence of osteopenia and osteoporosis is of concern in adults with Prader-Willi syndrome (PWS). Walking generates reaction forces that could stimulate bone mineralization and is popular in people with PWS. This study compared bone parameters and ground reaction forces (GRF) during gait between young adults with PWS and without PWS and explored associations between bone and GRFs during gait. Methods: 10 adults with PWS, 10 controls with obesity (OB) and 10 with normal weight (NW) matched on sex participated. Segmental and full body dual-energy x-ray absorptiometry scans provided femoral neck, spine, total body minus the head bone mineral density (BMD), bone mineral content (BMC). Vertical GRF, vertical impulse, posterior force and negative impulse were measured during 5 walking trials at a self-selected speed along a 10 m runway. Results: Multivariate analyses of variance showed that adults with PWS (n = 7-8) had hip and body BMD and BMC comparable (p > .050) to NW and lower (p < .050) than OB. Adults with PWS showed slower speed than NW (p < .050) but similar to OB (p > .050). Adults with PWS presented lower absolute vertical GRF, vertical impulse and negative impulse than OB (p < .050). Pearson r correlations (p < .050) in those with PWS (n = 7-8) indicated that femoral neck BMC was associated with vertical GRF (r = 0.716), vertical impulse (r = 0.780), posterior force (r = -0.805), and negative impulse (r = -0.748). Spine BMC was associated with speed (r = 0.829) and body BMD was associated with speed (r = 0.893), and posterior force (r = -0.780). Conclusions: Increased BMC in the femoral neck and body were associated with larger breaking forces during walking, a phenomenon normally observed at greater gait speeds. Faster walking speed was associated with greater BMC in the spine and body. Our preliminary results suggest that young adults with PWS could potentially benefit from faster walking for bone health; however, larger prospective studies are needed to confirm this.

8.
J Biomech ; 156: 111689, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37364395

RESUMO

Frontal and sagittal plane landing biomechanics differ between sexes but reported values don't account for simultaneous segment or joint motion necessary for a coordinated landing. Frontal and sagittal plane coordination patterns, angles, and moments were compared between 28 males and 28 females throughout the landing phase of a drop vertical jump. Females landed with less isolated thigh abduction (p = 0.018), more in-phase motion (p < 0.001), and more isolated shank adduction (p = 0.028) between the thigh and shank in the frontal plane compared with males. Females landed with less in-phase (p = 0.012) and more anti-phase motion (p = 0.019) between the thigh and shank in the sagittal plane compared with males. Females landed with less isolated knee flexion (p = 0.001) and more anti-phase motion (p < 0.001) between the sagittal and frontal plane knee coupling compared with males. Waveform and discrete metric analyses revealed females land with less thigh abduction from 20 % to 100 % and more shank abduction from 0 to 100 % of landing, smaller knee adduction at initial contact (p = 0.002), greater peak knee abduction angles (p = 0.015), smaller knee flexion angles at initial contact (p = 0.035) and peak (p = 0.034), greater peak knee abduction moments (p = 0.024), greater knee abduction angles from 0 to 13 % and 19 to 30 %, greater knee abduction moments from 19 to 25 %, and smaller knee flexion moments from 3 to 5 % of landing compared with males. Females utilize greater frontal plane motion compared with males, which may be due to different inter-segmental joint coordination and smaller sagittal plane angles. Larger knee abduction angles and greater knee adduction motion in females are due to aberrant shank abduction rather than thigh adduction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Articulação do Joelho , Masculino , Feminino , Humanos , Joelho , Extremidade Inferior , Perna (Membro) , Movimento , Fenômenos Biomecânicos
9.
Med Sci Sports Exerc ; 55(9): 1706-1716, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126038

RESUMO

PURPOSE: Individuals with anterior cruciate ligament reconstruction (ACLR) generally exhibit limb underloading behaviors during walking, but most research focuses on per-step comparisons. Cumulative loading metrics offer unique insight into joint loading as magnitude, duration, and total steps are considered, but few studies have evaluated if cumulative loads are altered post-ACLR. Here, we evaluated if underloading behaviors are apparent in ACLR limbs when using cumulative load metrics and how load metrics change in response to walking speed modifications. METHODS: Treadmill walking biomechanics were evaluated in 21 participants with ACLR at three speeds (self-selected (SS); 120% SS and 80% SS). Cumulative loads per step and per kilometer were calculated using knee flexion and adduction moment (KFM and KAM) and vertical ground reaction force (GRF) impulses. Traditional magnitude metrics for KFM, KAM, and GRF were also calculated. RESULTS: The ACLR limb displayed smaller KFM and GRF in early and late stances, but larger KFM and GRF during midstance compared with the contralateral limb ( P < 0.01). Only GRF cumulative loads (per step and per kilometer) were reduced in the ACLR limb ( P < 0.01). In response to speed modifications, load magnitudes generally increased with speed. Conversely, cumulative load metrics (per step and per kilometer) decreased at faster speeds and increased at slow speeds ( P < 0.01). CONCLUSIONS: Patients with ACLR underload their knee in the sagittal plane per step, but cumulatively over the course of many steps/distance, this underloading phenomenon was not apparent. Furthermore, cumulative load increased at slower speeds, opposite to what is identified with traditional single-step metrics. Assessing cumulative load metrics may offer additional insight into how load outcomes may be impacted in injured populations or in response to gait modifications.


Assuntos
Lesões do Ligamento Cruzado Anterior , Benchmarking , Humanos , Adulto , Marcha/fisiologia , Articulação do Joelho/fisiologia , Caminhada/fisiologia , Joelho , Fenômenos Biomecânicos , Lesões do Ligamento Cruzado Anterior/cirurgia
10.
Phys Ther Sport ; 60: 17-25, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640639

RESUMO

OBJECTIVES: Despite the growing use of whole-body vibration (WBV) to enhance quadriceps neuromuscular function, the hamstrings-specific response is unclear among those without neuromuscular impairment, which is important to inform performance-based recommendations. Our objective was to determine the immediate and prolonged effects of WBV on hamstrings and quadriceps neuromuscular function in uninjured individuals. DESIGN: Crossover. SETTING: Laboratory. PARTICIPANTS: Nineteen, recreationally active individuals performed WBV and control exercise protocols, consisting of six 1-min repetitions of isometric squats, on separate days in a randomized order. MAIN OUTCOME MEASURES: Electromyographic (EMG) amplitude, antagonist-to-agonist co-activation, rate of torque development, and peak torque of the hamstrings and quadriceps were measured pre-, immediately post-, and 20 min post-condition. Percentage change scores were calculated from baseline to each post-measurement. RESULTS: A condition main effect indicated that WBV reduced agonist semitendinosus EMG amplitudes more than the control (-12.1% vs. -1.5%, p < .001). Antagonist vastus medialis EMG amplitudes were reduced immediately, but not 20 min following WBV (-7.1% vs. 3.5%, p < .001). CONCLUSIONS: WBV induced an inhibitory effect on medial hamstrings activity during knee flexion contraction in a majority of our sample, yet this response was not uniformly observed and its functional relevance remains unclear in an uninjured population.


Assuntos
Músculos Isquiossurais , Humanos , Eletromiografia , Exercício Físico , Músculo Esquelético , Postura , Músculo Quadríceps/fisiologia , Vibração
11.
J Sport Rehabil ; 32(4): 353-360, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716746

RESUMO

CONTEXT: Induced mental fatigue negatively impacts sport performance and neurocognition. However, it is unclear how induced mental fatigue influences landing biomechanics. The purpose of this study was to examine the influence of mental fatigue on drop landing biomechanics in individuals with and without a concussion history. DESIGN: Crossover design. METHODS: Forty-eight (24 per group) recreationally active individuals were matched on age (±3 y), sex, and body mass index (±1 kg/m2). All participants completed an experimental (30-min Stroop task) and control (30-min reading magazines) intervention on separate days separated by a minimum of 24 hours. Drop landings were performed before and after both interventions. Outcomes included peak vertical ground reaction force (vGRF), vertical loading rate (VLR), knee flexion angle, knee abduction angle, external knee flexion moment, external knee abduction moment, and initial ground contact knee flexion and knee abduction angles. Separate 2 (group) × 2 (intervention) between-within analyses of covariance compared drop landing outcomes. Each group's average pre-Stroop and premagazine outcomes were covariates. RESULTS: There was a significant interaction for vGRF (P = .033, ηp2=.097) and VLR (P = .0497, ηp2=.083). The vGRF simple effects were not statistically significantly (P range = .052-.325). However, individuals with a concussion history displayed a medium effect size for greater vGRF post-Stroop compared with their own postmagazine vGRF (mean difference (95% confidence interval [95% CI] = 0.163 (-0.002 to 0.327) bodyweight (BW), p =.052, ηp2=.081. In contrast, the control group displayed a small effect size (mean difference [95% CI] = 0.095 [-0.069 to 0.259] BW, p =.251, ηp2=.029). Individuals with a concussion history displayed greater VLR post-Stroop compared with controls (mean difference [95% CI], 26.29 [6.19 to 46.40] BW/s, P = .012, ηp2=.134) and their own postmagazine values (mean difference [95% CI] = 32.61 [7.80 to 57.42] BW/s, p =.011, ηp2=.135). CONCLUSION: Mental fatigue leads to greater VLR for individuals with a concussion history. Athletic competition and activities of daily living can increase mental fatigue. Training programs may seek to teach mental fatigue reducing strategies to athletes with a concussion history.


Assuntos
Lesões do Ligamento Cruzado Anterior , Concussão Encefálica , Humanos , Fenômenos Biomecânicos , Atividades Cotidianas , Articulação do Joelho , Joelho , Extremidade Inferior
12.
J Electromyogr Kinesiol ; 68: 102723, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36402073

RESUMO

The foot progression angle (FPA) influences knee loading during gait, but its determinants are unclear. The purpose of this study was to compare FPA between males and females and also examine the association between lower extremity kinematics during gait, hip strength, and the FPA. 25 males and 25 females completed 5 gait trials while FPA and frontal and transverse plane hip and knee angles were calculated from the dominant limb during the foot flat portion of stance. Hip extensor/flexor, abductor/adductor, and internal/external rotator strength were evaluated using maximum voluntary isometric contractions. One-way MANOVAs compared gait and strength outcomes. Stepwise regression assessed the association between FPA, and MVIC and kinematics after accounting for speed in males and females. There was no difference in FPA between sexes (p > 0.05), but females had greater frontal and transverse plane hip angles compared with males (all p < 0.05). Greater hip abduction (p = 0.02) strength was associated with greater FPA, but only in males. In males, greater hip abductor strength may contribute to a more neutral position of the foot during gait, which could help maintain an equal knee loading distribution. Our results suggest that there are sex specific control strategies to achieve a similar FPA during gait.


Assuntos
Extremidade Inferior , Músculo Esquelético , Masculino , Feminino , Humanos , Músculo Esquelético/fisiologia , Extremidade Inferior/fisiologia , Quadril , Articulação do Joelho/fisiologia , Marcha/fisiologia , Força Muscular/fisiologia , Fenômenos Biomecânicos/fisiologia
13.
J Orthop Res ; 41(5): 994-1003, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36205181

RESUMO

Body mass index (BMI) and history of anterior cruciate ligament reconstruction (ACLR) independently influence gait biomechanics and knee osteoarthritis risk, but the interaction between these factors is unclear. The purpose of this study was to compare gait biomechanics between individuals with and without ACLR, and with and without overweight/obesity. We examined 104 individuals divided into four groups: with and without ACLR, and with low or high BMI (n = 26 per group). Three-dimensional gait biomechanics were evaluated at preferred speed. The peak vertical ground reaction force, knee flexion angle and excursion, external knee flexion moment, and external knee adduction moment were extracted for analysis. Gait features were compared between groups using 2 (with and without overweight/obesity) × 2 (with and without ACLR) analysis of variance. Primary findings indicated that those with ACLR and high BMI had a larger external knee adduction moment compared with those with low BMI and with (p = 0.004) and without ACLR (p = 0.005), and compared with those without ACLR and high BMI (p = 0.001). The main effects of ACLR and BMI group were found for the knee flexion moment, and those with ACLR and with high BMI had lower knee flexion moments compared with those without ACLR (p = 0.031) and with low BMI (p = 0.021), respectively. Data suggest that individuals with ACLR and high BMI may benefit from additional intervention targeting the knee adduction moment. Moreover, lower external knee flexion moments in those with high BMI and ACLR were consistent, but high BMI did not exacerbate deficits in the knee flexion moment in those with ACLR. [Correction added on 9 November 2022, after first online publication: In the preceding sentence, for clarity, the words "reductions in the lower" was removed from the initial sentence to read "Moreover, lower external knee flexion moments".].


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Índice de Massa Corporal , Fenômenos Biomecânicos , Sobrepeso/cirurgia , Marcha , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia
14.
J Biomech ; 141: 111213, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792406

RESUMO

Individuals with Prader-Willi Syndrome (PWS) have reduced mobility, which may be due to altered gait biomechanics. This study compared lower extremity intersegmental coordination and joint kinetics in adults with and without PWS. Walking biomechanics were evaluated in 10 adults with PWS and 10 controls without and 10 with obesity. The foot-shank and shank-thigh coordination was evaluated using modified vector coding and compared between groups using Kruskal-Wallis and Mann-Whitney U tests. The total support moment was summed from the ankle, knee, and hip extensor moments; and relative joint contributions were expressed as a percentage and compared between groups using one-way MANOVA. The group with PWS had greater exclusive shank segment rotation during later stance compared with controls with (p < 0.001) and without obesity (p < 0.001). The group with PWS also had a smaller absolute total support moment than controls with obesity during early and late stance (both p < 0.001), and lower normalized total support moment compared to controls without obesity during early stance (p = 0.019) and compared to controls with obesity during late stance (p = 0.004). Extensor moment contributions was similar between groups during early and late stance (all p > 0.05). Findings suggest a flat-footed gait pattern in PWS during late stance, which may negatively influence propulsion and speed. Moreover, those with PWS had lower total support moments than controls during early and late stance, but similar relative extensor contributions when walking at self-selected speeds. As such, improving overall torque generation in the lower extremity may be useful to improve stability and mobility during gait in PWS.


Assuntos
Síndrome de Prader-Willi , Adulto , Fenômenos Biomecânicos , Marcha , Humanos , Cinética , Articulação do Joelho , Extremidade Inferior , Obesidade , Caminhada
15.
J Sport Rehabil ; 31(7): 842-848, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413683

RESUMO

OBJECTIVES: The purpose of this study was to compare functional movement screen (FMS) scores and drop vertical jump (DVJ) kinematics between those with and without anterior cruciate ligament reconstruction (ACLR), and to evaluate the association between FMS composite score and DVJ kinematics. DESIGN: Cross-sectional. PARTICIPANTS: Sixty individuals with and without a history of ACLR. MAIN OUTCOME MEASURES: Composite FMS score and the dorsiflexion, knee-flexion, hip-flexion, knee abduction, hip adduction, and trunk-flexion angles during a DVJ. RESULTS: The FMS scores did not differ between groups (P > .05). There were smaller peak and initial contact hip-flexion angles in the ACLR and contralateral limbs compared with controls, and smaller peak dorsiflexion angles in the ACLR compared with contralateral limbs (P < .05). Lower FMS score was associated with a smaller peak dorsiflexion angle, smaller peak knee-flexion angle, and larger peak knee abduction angle in the ACLR limb (ΔR2 = .14-.23); a smaller peak dorsiflexion angle and smaller peak knee-flexion angle in the contralateral limb (ΔR2 = .17-.19); and a smaller peak dorsiflexion angle, smaller peak knee-flexion angle, and larger peak knee abduction angle in the control limb (ΔR2 = .16-.22). CONCLUSION: The FMS scores did not differ between groups, but were associated with DVJ kinematics and should be a complementary rather than substitute assessment.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Articulação do Joelho , Movimento
16.
Gait Posture ; 92: 421-427, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973582

RESUMO

BACKGROUND: Individuals with obesity have impaired gait and muscle function that may contribute to reduced mobility and increased fall risk. RESEARCH QUESTIONS: (1) what is the difference in spatiotemporal gait parameters and joint kinetics between individuals with and without obesity; (2) what is the association between spatiotemporal gait parameters, joint kinetics, and quadriceps function? METHODS: Forty-eight young adults with obesity (BMI = 33.0 ± 4.1 kg/m2) and 48 without obesity (BMI = 21.6 ± 1.7 kg/m2) completed assessments of quadriceps function (peak torque and early/late rate of torque development (RTD)) and walking biomechanics at self-selected speed. Spatiotemporal gait parameters (stance time, double support time, double support to stance ratio, step width, step length, cadence, and gait stability ratio (GSR)) and joint kinetics (total support moment, and relative contribution from extensor moments) were compared using one-way MANOVAs. Partial correlation examined the association between the total support moment and quadriceps function, and spatiotemporal gait parameters controlling for sex and speed. RESULTS: Individuals with obesity walked with longer stance (p = 0.01), longer double-limb support (p < 0.001), wider steps (p < 0.001), lower cadence (p = 0.03), and a greater absolute (p < 0.001) but lesser normalized total support moment (p = 0.03) compared with adults without obesity. In those with obesity, greater PT was associated with less double limb support (p = 0.011) and smaller double support to stance ratio (p = 0.006); greater early RTD was associated with less double limb support (r = -0.455, p = 0.0021), less stance time (r = -0.384, p = 0.008), and a smaller double support to stance ratio (r = -0.371, p = 0.011). In those without obesity, a larger total support moment was associated with longer step length (r = 0.512, p < 0.001), lesser cadence (r = -0.497, p < 0.001), and smaller GSR (-0.460, p = 0.001). SIGNIFICANCE: Individuals with obesity walk with altered spatiotemporal gait parameters and joint kinetics that may compromise stability. Extended periods of support may be a strategy used by individuals with obesity to increase stability during gait and accomodate insufficient quadriceps function.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Cinética , Obesidade/complicações , Músculo Quadríceps , Caminhada/fisiologia , Adulto Jovem
17.
J Sports Sci ; 40(1): 89-95, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34494939

RESUMO

Recreational running can benefit knee cartilage, but the relationship between competitive running and knee cartilage is unclear. We compared femoral cartilage between collegiate runners, recreational runners, and controls; and evaluated the association between running amount, running kinetics and femoral cartilage characteristics. Thirty collegiate runners, 30 recreational runners, and 30 controls completed ultrasound imaging of the femoral cartilage and running gait analysis. Outcomes included cartilage thickness, and echo-intensity from the medial and lateral femoral condyles; and the peak external knee flexion (KFM) and knee adduction moments. Cartilage outcomes were compared via one-way MANOVA. The associations between running kinetics, running amount, and femoral cartilage characteristics were assessed via linear regression models adjusted for sex. No differences were found in cartilage outcomes between groups (p = 0.067). Among recreational runners, a larger peak KFM was associated with lower medial femoral cartilage echo-intensity (ΔR2 = 0.176, Δp = 0.014). In collegiate runners, a greater self-reported running amount was associated with higher medial femoral cartilage (ΔR2 = 0.117, Δp = 0.046) and lateral cartilage (ΔR2 = 0.121, Δp = 0.042) echo-intensity. Cartilage did not differ between groups, but the association between running kinetics, running amount, and knee cartilage may vary between collegiate and recreational runners.


Assuntos
Corrida , Fenômenos Biomecânicos , Cartilagem , Fêmur/diagnóstico por imagem , Humanos , Cinética , Articulação do Joelho/diagnóstico por imagem
18.
J Appl Biomech ; 37(5): 450-457, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34504042

RESUMO

Research has identified an increased risk of lower extremity injury postconcussion, which may be due to aberrant biomechanics during dynamic tasks. The purpose of this study was to compare the drop landing biomechanics between individuals with and without a concussion history. Twenty-five individuals with and 25 without a concussion history were matched on age (±3 y), sex, and body mass index (±1 kg/m2). Three-dimensional landing biomechanics were recorded to obtain dependent variables (peak vertical ground reaction force, loading rate, knee flexion angle and external moment, knee abduction angle and external moment, and knee flexion and abduction angle at ground contact). A 1-way multivariate analysis of variance compared outcomes between groups. There was no difference in drop landing biomechanics between individuals with and without a concussion history (F10,39 = 0.460, P = .877, Wilk Λ = .918). There was an effect of time since concussion on knee flexion characteristics. Time since most recent concussion explained a significant amount of variation in both peak (ΔR2 = .177, ß = -0.305, ΔP = .046) and initial ground contact (ΔR2 = .292, ß = -0.204, ΔP = .008) knee flexion angle after covarying for sex and body mass index. Therefore, time since concussion should be considered when evaluating biomechanical patterns.


Assuntos
Lesões do Ligamento Cruzado Anterior , Fenômenos Biomecânicos , Humanos , Joelho , Articulação do Joelho , Movimento
19.
J Strength Cond Res ; 35(5): 1364-1371, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335723

RESUMO

ABSTRACT: Choe, KH, Coburn, JW, Costa, PB, and Pamukoff, DN. Hip and knee kinetics during a back-squat and deadlift. J Strength Cond Res 35(5): 1364-1371, 2021-The back-squat and deadlift are performed to improve hip and knee extensor function. The purpose of this study was to compare lower extremity joint kinetics (peak net joint moments [NJMs] and positive joint work [PJW]) between the back-squat and deadlift. Twenty-eight resistance-trained subjects (17 men: 23.7 ± 4.3 years, 1.76 ± 0.09 m, 78.11 ± 10.91 kg; 11 women: 23.0 ± 1.9 years, 1.66 ± 0.06 m, 65.36 ± 7.84 kg) were recruited. One repetition maximum (1RM) testing and biomechanical analyses occurred on separate days. Three-dimensional biomechanics of the back-squat and deadlift were recorded at 70 and 85% 1RM for each exercise. The deadlift demonstrated larger hip extensor NJM than the back-squat {3.59 (95% confidence interval [CI]: 3.30-3.88) vs. 2.98 (95% CI: 2.72-3.23) Nm·kg-1, d = 0.81, p < 0.001}. However, the back-squat had a larger knee extensor NJM compared with the deadlift (2.14 [95% CI: 1.88-2.40] vs. 1.18 [95% CI: 0.99-1.37] Nm·kg-1, d = 1.44 p < 0.001). More knee PJW was performed during the back-squat compared with the deadlift (1.85 [95% CI: 1.60-2.09] vs. 0.46 [95% CI: 0.35-0.58] J·kg-1, d = 2.10, p < 0.001). However, there was more hip PJW during the deadlift compared with the back-squat (3.22 [95% CI: 2.97-3.47] vs. 2.37 [95% CI: 2.21-2.54] J·kg-1, d = 1.30, p < 0.001). Larger hip extensor NJM and PJW during the deadlift suggest that individuals targeting their hip extensors may yield greater benefit from the deadlift compared with the back-squat. However, larger knee extensor NJM and PJW during the back-squat suggest that individuals targeting their knee extensor muscles may benefit from incorporating the back-squat compared with the deadlift.


Assuntos
Joelho , Levantamento de Peso , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Articulação do Joelho , Masculino , Postura
20.
J Sports Sci Med ; 20(4): 759-765, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35321135

RESUMO

It is unclear if the Functional Movement Screen (FMS) scoring criteria identify kinematics that have been associated with lower extremity injury risk. The purpose was to compare lower extremity kinematics of the overhead deep squat (OHDS) during the FMS between individuals who were grouped on FMS scoring. Forty-five adults who were free of injury and without knowledge of the FMS or its scoring criteria (males = 19, females = 26; height = 1.68 0.08 m; mass = 70.7 7 13.0 kg). Three-dimensional lower extremity kinematics during an OHDS were measured using a motion capture system. One-way MANOVA was used to compare kinematic outcomes (peak hip flexion angle, hip adduction angle, knee flexion angle, knee abduction angle, knee internal rotation angle, and ankle dorsiflexion angle) between FMS groups. Those who scored a 3 had greater peak hip flexion angle (F2,42 = 8.75; p = 0.001), knee flexion angle (F2,42 = 13.53; p = 0.001), knee internal rotation angle (F2,42 = 12.91; p = 0.001), and dorsiflexion angle (F2,42 = 9.00; p = 0.001) compared to those who scored a 2 or a 1. However, no differences were found in any outcome between those who scored a 2 and those who scored a 1, or in frontal plane hip or knee kinematics. FMS scoring for the OHDS identified differences in squat depth, which was characterized by larger peak hip, knee, and dorsi- flexion angles in those who scored a 3 compared with those who scored 2 or 1. However, no differences were found between those who scored a 2 or 1, and caution is recommended when interpreting these scores. Despite a different FMS score, few differences were observed in frontal or transverse plane hip and knee kinematics, and other tasks may be needed to assess frontal plane kinematics.


Assuntos
Extremidade Inferior , Movimento , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Joelho , Masculino , Postura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...