Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(43): 17482-17493, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37861463

RESUMO

Sodium metal has emerged as a highly promising anode material for sodium-based batteries, owing to its intrinsic advantages, including its high theoretical capacity, low working plateau and low cost. However, the uncontrolled formation of sodium dendrites accompanied by unrestricted volume expansion severely limits its application. To tackle these issues, we propose an approach to address these issues by adopting a three-dimensional (3D) structure of Ti3C2Tx/reduced graphene oxide (Ti3C2Tx/rGO) constructed by a direct-ink writing (DIW) 3D printing technique as the Na metal anode host electrode. The combination of the 3D-printed rGO skeleton offering artificial porous structures and the incorporation of sodiophilic Ti3C2Tx nanosheets provides abundant nucleation sites and promotes uniform sodium metal deposition. This specially designed architecture significantly enhances the Na metal cycling stability by effectively inhibiting dendrite formation. The experimental results show that the designed Ti3C2Tx/rGO electrode can achieve a high coulombic efficiency (CE) of 99.91% after 1800 cycles (3600 h) at 2 mA cm-2 with 2 mA h cm-2. Notably, the adopted electrodes exhibit a long life span of more than 1400 h with a high CE over 99.93% when measured with an ultra-high capacity of 50 mA h cm-2 at 5 mA cm-2. Furthermore, a 3D-printed full cell consisting of a Na@Ti3C2Tx/rGO anode and a 3D-printed Na3V2(PO4)3C-rGO (NVP@C-rGO) cathode was successfully demonstrated. This 3D-printed cell could provide a notable capacity of 85.3 mA h g-1 at 100 mA g-1 after 500 cycles. The exceptional electrochemical performance achieved by the 3D-printed full cell paves the way for the development of practical sodium metal anodes.

2.
Appl Opt ; 62(22): 5946-5953, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706947

RESUMO

In mode-locked fiber lasers, the formation of ultrashort pulses from noisy or unstable states is a crucial area of research. Investigating these complex nonlinear dynamics can lead to valuable insights and new practical engineering techniques, particularly for the design and optimization of optical systems. Time-stretch dispersive Fourier transform, utilized in our study to investigate dissipative solitons formation in a net-normal dispersion nonlinear polarization evolution mode-locked fiber laser, provides a window into the intricate dynamics of such systems. In our experiments, the identification of five distinct transient stages in the formation process sheds light on the underlying mechanisms of dissipative soliton (DS) formation. The five distinct transient stages involved in the formation process include relaxation oscillation, modulation instability, spectral broadening, soliton explosions (SEs), and stable mode-locking. Notably, we also observed the generation of dissipative rogue waves during the SE stage. Our findings shed light on the intricate dynamics of DS formation and offer valuable insights for the design and optimization of mode-locked fiber lasers.

3.
ACS Nano ; 17(11): 10844-10856, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37204014

RESUMO

Sodium metal anode, featured by favorable redox voltage and material availability, offers a feasible avenue toward high-energy-density devices. However, uneven metal deposition and notorious dendrite proliferation synchronously hamper its broad application prospects. Here, a three-dimensional (3D) porous hierarchical silver/reduced graphene oxide (Ag/rGO) microlattice aerogel is devised as a sodiophilic monolith, which is realized by a direct ink writing 3D printing technology. The thus-printed Na@Ag/rGO electrode retains a durable cycling lifespan over 3100 h at 3.0 mA cm-2/1.0 mAh cm-2, concurrently harvesting a high average Coulombic efficiency of 99.80%. Impressively, it can be cycled for 340 h at a stringent condition of 6.0 mA cm-2 with a large areal capacity of 60.0 mAh cm-2 (∼1036.31 mAh g-1). Meanwhile, the well-regulated Na ion flux and uniform deposition kinetics are systematically probed by comprehensive electroanalytical analysis and theoretical simulations. As a result, assembled Na metal full battery delivers a long cycling sustainability over 500 cycles at 100 mA g-1 with a low per-cycle decay of 0.85%. The proposed strategy might inspire the construction of high-capacity Na metal anodes with appealing stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...