Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38225533

RESUMO

BACKGROUND: The current evidence on the use of laryngeal mask airway (LMA) as an airway management technique for general anesthesia (GA) during atrial fibrillation (AF) catheter ablation (CA) is insufficient. This study aims to compare the feasibility, safety, and clinical benefits of LMA and endotracheal intubation (ETI) for airway management in AF CA. METHODS: One hundred fifty-two consecutive patients with AF who underwent CA under GA were included and divided into two groups based on different airway management methods (66 in the LMA group, 86 in the ETI group). After propensity score matching, a final analysis cohort of 132 patients was obtained to compare procedural parameters, adverse events, and prognosis between the two groups. RESULTS: The LMA group exhibited significantly shorter total procedural time (p = 0.039), anesthesia induction time (p = 0.015), and recovery time (p = 0.006) compared to the ETI group. The mean arterial pressure (MAP) and heart rate were significantly lower in the LMA group during extubation and 1-min post-extubation (p < 0.05). Furthermore, the LMA group demonstrated lower MAP levels during intubation (p = 0.029). The incidences of intraoperative hypotension (p = 0.017) and bradycardia (p = 0.032) were significantly lower in the LMA group. The incidences of delayed recovery or delirium (p = 0.027), laryngeal or airway injury (p = 0.016), cough or bucking (p = 0.001), and sore throat (p < 0.001) were significantly lower in the LMA group. There were no statistically significant differences in catheter stability parameters and sinus rhythm maintenance rates between the two groups (p > 0.05). CONCLUSION: LMA is feasible, safe, and effective in AF CA as an optimized airway management technique for GA.

2.
Plants (Basel) ; 12(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960105

RESUMO

Quantification of the trade-offs among greenhouse gas (GHG) emissions, yield, and farmers' incomes is essential for proposing economic and environmental nitrogen (N) management strategies for optimizing agricultural production. A four-year (2017-2020) field experiment (including four treatments: basic N fertilizer treatment (BF), suitable utilization of fertilization (SU), emission reduction treatment (ER), and high fertilization (HF)) was conducted on maize (Zea mays L.) in the North China Plain. The Life Cycle Assessment (LCA) method was used in this study to quantify the GHG emissions and farmers' incomes during the whole maize production process. The total GHG emissions of BF, SU, ER, and HF treatments in the process of maize production are 10,755.2, 12,908.7, 11,950.1, and 14,274.5 kg CO2-eq ha-1, respectively, of which the direct emissions account for 84.8%, 76.8%, 74.9%, and 71.0%, respectively. Adding inhibitors significantly reduced direct GHG emissions, and the N2O and CO2 emissions from the maize fields in the ER treatment decreased by 30.0% and 7.9% compared to those in the SU treatment. Insignificant differences in yield were found between the SU and ER treatments, indicating that adding fertilizer inhibitors did not affect farmers' incomes while reducing GHG emissions. The yield for SU, ER, and HF treatments all significantly increased by 12.9-24.0%, 10.0-20.7%, and 2.1-17.4% compared to BF, respectively. In comparison with BF, both SU and ER significantly promoted agricultural net profit (ANP) by 16.6% and 12.2%, with mean ANP values of 3101.0 USD ha-1 and 2980.0 USD ha-1, respectively. Due to the high agricultural inputs, the ANP values in the HF treatment were 11.2%, 16.6%, and 12.4% lower than those in the SU treatment in 2018-2020. In conclusion, the combination of N fertilizer and inhibitors proved to be an environmentally friendly, high-profit, and low-emissions production technology while sustaining or even increasing maize yields in the North China Plain, which was conducive to achieving agricultural sustainability.

3.
Front Microbiol ; 14: 1205765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608945

RESUMO

Harmful algal blooms (HABs), mainly formed by dinoflagellates, have detrimental effects on marine ecosystems and public health. Therefore, detecting HABs is crucial for early warning and prevention of HABs as well as the mitigation of their adverse effects. Although various methods, such as light microscopy, electron microscopy, real-time PCR, and microarrays, have already been established for the detection of HABs, they are still cumbersome to be exploited in the field. Therefore, rapid nucleic detection methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP)-lateral flow dipstick (LFD) have been developed for monitoring bloom-forming algae. However, the CRISPR/Cas-based detection of HABs has yet to be applied to this field. In this study, we developed a method for detecting Karenia mikimotoi (K. mikimotoi), a typical ichthyotoxic dinoflagellate responsible for global blooms. Our method utilized Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) to target and cleave the internal transcribed spacer (ITS) of K. mikimotoi, guided by RNA. We leveraged the target-activated non-specific single-stranded deoxyribonuclease cleavage activity of LbCas12a to generate signals that can be detected using fluorescence-read machines or LFDs. By combining RPA and LbCas12a with reporters, we significantly enhanced the sensitivity, enabling the detection of ITS-harboring plasmids at concentrations as low as 9.8 aM and genomic DNA of K. mikimotoi at levels as low as 3.6 × 10-5 ng/µl. Moreover, we simplified the genomic DNA extraction method using cellulose filter paper (CFP) by directly eluting the DNA into RPA reactions, reducing the extraction time to < 30 s. The entire process, from genomic DNA extraction to result reporting, takes less than an hour, enabling the identification of nearly a single cell. In conclusion, our method provided an easy, specific, and sensitive approach for detecting K. mikimotoi, offering the potential for efficient monitoring and management of K. mikimotoi blooms.

4.
Natl Sci Rev ; 10(9): nwad157, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565193

RESUMO

Antarctica's response to climate change varies greatly both spatially and temporally. Surface melting impacts mass balance and also lowers surface albedo. We use a 43-year record (from 1978 to 2020) of Antarctic snow melt seasons from space-borne microwave radiometers with a machine-learning algorithm to show that both the onset and the end of the melt season are being delayed. Granger-causality analysis shows that melt end is delayed due to increased heat flux from the ocean to the atmosphere at minimum sea-ice extent from warming oceans. Melt onset is Granger-caused primarily by the turbulent heat flux from ocean to atmosphere that is in turn driven by sea-ice variability. Delayed snowmelt season leads to a net decrease in the absorption of solar irradiance, as a delayed summer means that higher albedo occurs after the period of maximum solar radiation, which changes Antarctica's radiation balance more than sea-ice cover.

5.
iScience ; 26(6): 106837, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250783

RESUMO

Soil moisture (SM) and atmospheric humidity (AH) are crucial climatic variables that significantly affect the climate system. However, the combined influencing mechanisms of SM and AH on the land surface temperature (LST) under global warming are still unclear. Here, we systematically analyzed the interrelationships among annual mean values of SM, AH, and LST using ERA5-Land reanalysis data and revealed the role of SM and AH on the spatiotemporal variations of LST through mechanism analysis and regression methods. The results showed that net radiation, SM, and AH could well model the long-term variability of LST well and explain 92% of the variability. Moreover, SM played an essential and different role under the different LST backgrounds. The AH always displayed a greenhouse effect on the LST. This study provides essential insights into the global climate change mechanism from the surface hydrothermal processes perspective.

6.
PeerJ ; 10: e14561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530408

RESUMO

The soil moisture daily diagnostic equation (SMDE) evaluates the relationship between the loss function coefficient and the summation of the weighted average of precipitation. The loss function coefficient uses the day of the year (DOY) to approximate the seasonal changes in soil moisture loss for a given location. Solar radiation is the source of the energy that drives the complex and intricates of the earth-atmospheric processes and biogeochemical cycles in the environment. Previous research assumed DOY is the approximation of other environmental factors (e.g., temperature, wind speed, solar radiation). In this article, two solar radiation parameters were introduced, i.e., the actual solar radiation and the clear sky solar radiation and were incorporated into the loss function coefficient to improve its estimation. This was applied to 2 years of continuous rainfall, soil moisture data from USDA soil climate network (SCAN) sites AL2053, GA2027 MS2025, and TN2076. It was observed that the correlation coefficient between the observed soil moisture and B values (which is the cumulated average of rainfall to soil moisture loss) increased on average by 2.3% and the root mean square errors (RMSEs) for estimating volumetric soil moisture at columns 0-5, 0-10, 0-20, 0-50, 0-100 cm reduced on average by 8.6% for all the study sites. The study has confirmed that using actual solar radiation data in the soil moisture daily diagnostic equation can improve its accuracy.


Assuntos
Solo , Energia Solar , Clima , Temperatura
7.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2279-2285, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36043837

RESUMO

Shrubs are the major components of vegetation in arid and semi-arid areas, and play a pivotal role in maintaining ecosystem stability and function. The nurse effects of shrubs can help with the regeneration of native target plant species by alleviating the adverse influences that limit their growth and reproduction in degraded habitats. We summarized the main research results and application of shrub nurse effects in the last 20 years. We discussed several facilitation mechanisms of nurse shrubs, including microhabitat amelioration, fertile island formation, defense and resistance against herbivores, introduction of beneficial microorganism and propagule propagation or preservation, as well as changes in the patterns of interspecific competitive networks. Key factors affecting nurse effects were analyzed, including abiotic environments, biological disturbances, plant life history as well as growth and reproductive strategies. Prospects for future research were also considered from the aspects of improving theore-tical mechanisms of nurse effects by shrubs and building models involved in multiple plant species interaction affec-ted by multifactors.


Assuntos
Ecossistema , Plantas , Herbivoria
8.
Front Cardiovasc Med ; 9: 794445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571162

RESUMO

Background: Coronary heart disease (CHD) is one of the leading causes of mortality in the world. Although the traditional risk factors for CHD have been identified, it seems that there are still many CHD cases without these factors. Previous studies have hypothesized that Helicobacter pylori (H. pylori) infection was associated with the risk of CHD. Objective: The association between H. pylori infection and the risk of CHD was studied using a systematic evaluation and meta-analysis method. Methods: In order to find relevant studies, four electronic databases were systematically searched until August 2021. According to the inclusion and exclusion criteria, studies were screened and data were extracted. Under the random-effects or the fixed-effects model, the odds ratio (OR) and 95% confidence interval (95% CI) were combined. All analyses were conducted using Review Manager software (RevMan 5.4). Results: Among the included studies, 2 studies were analyzed for H. pylori stool antigen test, 2 studies were analyzed for H. pylori histological staining test, 13 studies were analyzed for the anti-CagA test, and 38 studies were analyzed for the anti-H. pylori IgG test. The pooled results revealed that positive anti-H. pylori IgG was significantly associated with an increased risk of CHD (OR, 1.58; 95% CI: 1.34-1.87). Similarly, positive anti-CagA, positive H. pylori stool antigen, and positive H. pylori histological staining were significantly associated with the development of CHD with (OR: 1.33, 95% CI: 1.16-1.53), (OR: 3.50, 95% CI: 1.60-7.66), and (OR: 1.78, 95% CI: 1.12-2.83), respectively. Conclusion: This meta-analysis showed that H. pylori infection increased the risk of CHD. However, more studies are needed to further investigate whether early eradication of H. pylori may reduce the morbidity of CHD.

9.
Sci Total Environ ; 838(Pt 2): 156214, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618123

RESUMO

The water and energy in the land surface and lower atmosphere have a strong coupling relationship. Apart from the land surface temperature (Ts) and air temperature (Ta), the land surface-air temperature difference (Ts-Ta) is also an essential parameter reflecting the coupling process. However, the global spatiotemporal variations and influencing factors of Ts-Ta remain not well explored. Here, ERA5-land reanalysis data, GIMMS NDVI data, and elevation data were used to analyze the global spatiotemporal heterogeneity and influencing factors of Ts-Ta. It was found that annual mean Ts-Ta exhibited a decreasing trend from the equator to polar areas. And the annual Ts-Ta increased at 0.009 °C/10a from 1981 to 2020. The variations of global net radiation mainly determined the spatiotemporal heterogeneity of global Ts-Ta. The different properties of the land surface and near-surface atmosphere were the main factors affecting the Ts-Ta, including soil moisture, vegetation, snow cover, and the water vapor content in the atmosphere. In addition, Ts and Ta also affected each other. These findings are conducive to a better understanding of the land-atmosphere coupling, and it is of great significance to take better measures to adapt the global climate change.


Assuntos
Mudança Climática , Solo , Estações do Ano , Temperatura
10.
Bioorg Chem ; 124: 105800, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468415

RESUMO

Icariside II, a flavonol glycoside, one of the major components of Traditional Chinese Medicine Herba epimedii. In the present study, we found that Icariside II suppressed the proliferation of CRC by inducing cell cycle arrest and apoptosis in vitro and inhibited tumor growth in vivo. The further mechanism investigation showed that Icariside II suppressed the expression of ß-catenin and led to the functional inactivation of Wnt/ß-catenin signaling. Circß-catenin was considered as a promising candidate for mediating the tumorigenesis and the activation of Wnt/ß-catenin signaling in CRC cells. Furthermore, Icariside II has been proven to suppress the biogenesis of circß-catenin via epigenetically targeting DNA methyltransferases (DNMTs) to decrease global DNA methylation levels in CRC cells. Taken together, our results indicated that Icariside II suppressed tumorigenesis by epigenetically silencing the activation of circß-catenin-Wnt/ß-catenin axis in colorectal cancer. More importantly, the information gained from this study suggest that Icariside II may have great potential to be developed as a therapeutic drug for CRC patients.


Assuntos
Cateninas , Neoplasias Colorretais , Flavonoides , Via de Sinalização Wnt , beta Catenina , Carcinogênese , Cateninas/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Epigênese Genética/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
11.
Front Plant Sci ; 13: 848424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371147

RESUMO

Iron is a trace metal that is found in animals, plants, and the human body. Human iron absorption is hampered by plant iron shortage, which leads to anemia. Leafy vegetables are one of the most direct and efficient sources of iron for humans. Despite the fact that ferrotrophic disorder is common in calcareous soil, however, non-heading Chinese cabbage performs a series of reactions in response to iron deficiency stress that help to preserve iron homeostasis in vivo. In this study, we discovered that iron deficiency stress caused leaf yellowing and impeded plant development in both iron-deficient and control treatments by viewing or measuring phenotypic, chlorophyll content, and Fe2+ content in both iron-deficient and control treatments. We found a total of 9213 differentially expressed genes (DEGs) in non-heading Chinese cabbage by comparing root and leaf transcriptome data with iron deficiency and control treatments. For instance, 1927 DEGs co-expressed in root and leaf, including 897 up-regulated and 1030 down-regulated genes, respectively. We selected some key antioxidant genes, hormone signal transduction, iron absorption and transport, chlorophyll metabolism, and transcription factors involved in the regulation of iron deficiency stress utilizing GO enrichment, KEGG enrichment, multiple types of functional annotation, and Weighted Gene Co-expression Network Analysis (WGCNA). This study identifies prospective genes for maintaining iron homeostasis under iron-deficient stress, offering a theoretical foundation for further research into the molecular mechanisms of greater adaptation to iron-deficient stress, and perhaps guiding the development of iron-tolerant varieties.

12.
Sci Total Environ ; 822: 153607, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114238

RESUMO

The surface-air temperature difference (Ts-Ta) is the main contributor to the sensible heat flux, and also an important indicator for land degradation. However, as the main influencing factor, the effect of soil moisture (SM) on Ts-Ta at the global scale has not been well articulated. Here, based on the ERA5-land reanalysis data from 1981 to 2019, the impacts of SM on Ts-Ta were studied. It was found that Ts-Ta over 54% of the global land increased, and SM across 70.7% of the world land decreased. In the increased SM areas, the increased soil evaporation weakened the increasing trend of Ts resulting in smaller Ts-Ta. In the decreased SM areas, the latent heat flux increased with soil evaporation and Ts-Ta decreased when SM was relatively high, and the larger sensible heat flux due to decreased soil evaporation aggravated Ts-Ta when SM was relatively low. The effect of SM on Ts-Ta presented nonlinear relationship due to the different background value of SM and temperature. The variation of SM at low SM or low temperature areas had an amplification effect on Ts-Ta. These findings will provide new insights into the different regional characteristics of global changing climate and the improvement of land degradation assessment indicators.


Assuntos
Temperatura Alta , Solo , Temperatura
13.
BMC Plant Biol ; 21(1): 567, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861825

RESUMO

BACKGROUND: Tipburn, also known as leaf tip necrosis, is a severe issue in Chinese cabbage production. One known cause is that plants are unable to provide adequate Ca2+ to rapidly expanding leaves. Bacterial infection is also a contributing factor. Different cultivars have varying degrees of tolerance to tipburn. Two inbred lines of Chinese cabbage were employed as resources in this research. RESULTS: We determined that the inbred line 'J39290' was the tipburn resistant material and the inbred line 'J95822' was the tipburn sensitive material based on the severity of tipburn, and the integrity of cell membrane structure. Ca2+ concentration measurements revealed no significant difference in Ca2+ concentration between the two materials inner leaves. Transcriptome sequencing technology was also used to find the differentially expressed genes (DEGs) of 'J95822' and 'J39290', and there was no significant difference in the previously reported Ca2+ uptake and transport related genes in the two materials. However, it is evident through DEG screening and classification that 23 genes are highly linked to plant-pathogen interactions, and they encode three different types of proteins: CaM/CML, Rboh, and CDPK. These 23 genes mainly function through Ca2+-CaM/CML-CDPK signal pathway based on KEGG pathway analysis, protein interaction prediction, and quantitative real-time PCR (qRT-PCR) of key genes. CONCLUSIONS: By analyzing the Ca2+ concentration in the above two materials, the transcription of previously reported genes related to Ca2+ uptake and transport, the functional annotation and KEGG pathway of DEGs, it was found that Ca2+ deficiency was not the main cause of tipburn in 'J95822', but was probably caused by bacterial infection. This study lays a theoretical foundation for exploring the molecular mechanism of resistance to tipburn in Chinese cabbage, and has important guiding significance for genetics and breeding.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Brassica rapa/genética , Cálcio/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Predisposição Genética para Doença , Magnésio/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Potássio/química , Sódio/química
14.
Front Pharmacol ; 12: 708967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690755

RESUMO

Gallic acid (3,4,5-trihydroxybenzoic acid; GA), a natural phenolic acid, is abundantly found in numerous natural products. Increasing evidence have demonstrated that GA plays anti-cancer roles in multiple cancers. However, its anti-tumor effects on hepatocellular carcinoma (HCC) and the underlying mechanism remain obscure. In the present study, we found that GA suppressed the in vitro cell viability and metastasis and inhibited the in vivo tumor growth of HCC cells. The underlying mechanism was further to investigate and it was showed that GA suppressed the expression of ß-catenin and led to the functional inactivation of Wnt/ß-catenin signaling. As a kind of significant regulators, the long noncoding RNA molecules (lncRNAs) have attracted widespread attentions for their critical roles in diverse biological process and human diseases. To further identify which lncRNA participated this GA-mediated process, several lncRNAs related to Wnt/ß-catenin signaling were chosen for examination of their expression profiling in the GA-treated HCC cells. Of which, Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) was the most promising candidate. And moreover, MALAT1 was significantly down-regulated by GA. Its overexpression partially reversed the GA-induced the inhibitory effects on cell proliferation and metastasis; and successfully abolished the suppressive effect of GA on Wnt/ß-catenin signaling. In conclusion, our results indicated that GA suppressed tumorigenesis in vitro and in vivo by the MALAT1-Wnt/ß-catenin signaling axis, suggesting that GA has great potential to be developed as a chemo-prevention and chemotherapy agent for HCC patients.

15.
Front Plant Sci ; 12: 715487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539706

RESUMO

The number and proportion of female flowers per plant can directly influence the yield and economic benefits of cucurbit crops. Ethephon is often used to induce female flowers in cucurbits. However, the mechanism through which it affects floral sex differentiation in pumpkin is unknown. We found that the application of ethephon on shoot apical meristem of pumpkin at seedling stage significantly increased the number of female flowers and expedited the appearance of the first female flower. These effects were further investigated by transcriptome and hormone analyses of plants sprayed with ethephon. A total of 647 differentially expressed genes (DEGs) were identified, among which 522 were upregulated and 125 were downregulated. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis indicated that these genes were mainly enriched in plant hormone signal transduction and 1-aminocyclopropane-1-carboxylate oxidase (ACO). The results suggests that ethylene is a trigger for multiple hormone signaling, with approximately 4.2% of the identified DEGs involved in ethylene synthesis and multiple hormone signaling. Moreover, ethephon significantly reduced the levels of jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-ILE), and para-topolin riboside (pTR) but increased the levels of 3-indoleacetamide (IAM). Although the level of 1-aminocyclopropanecarboxylic acid was not changed, the expression of ACO genes, which code for the enzyme catalyzing the key rate-limiting step in ethylene production, was significantly upregulated after ethephon treatment. The results indicate that the ethephon affects the transcription of ethylene synthesis and signaling genes, and other hormone signaling genes, especially auxin responsive genes, and modulates the levels of auxin, jasmonic acid, and cytokinin (CK), which may together contribute to femaleness.

16.
Front Pharmacol ; 12: 723145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434113

RESUMO

Troxerutin (TRX), a semi-synthetic derivative of the natural bioflavonoid rutin, is a bioactive flavonoid widely abundant in various fruits and vegetables. Known as vitamin P4, TRX has been demonstrated to have several activities including anti-inflammation, anti-oxidants, vasoprotection, and immune support in various studies. Although rutin, the precursor of troxerutin, was reported to have a protective role against bone loss, the function of TRX in skeletal system remains unknown. In the present study, we found that TRX promoted osteogenic differentiation of human mesenchymal stem cells (MSCs) in a concentration-dependent manner by stimulating the alkaline phosphatase (ALP) activity, calcium nodule formation and osteogenic marker genes expression in vitro. The further investigation demonstrated that TRX stimulated the expression of the critical transcription factor ß-catenin and several downstream target genes of Wnt signaling, thus activated Wnt/ß-catenin signaling. Using a femur fracture rats model, TRX was found to stimulate new bone formation and accelerate the fracture healing in vivo. Collectively, our data demonstrated that TRX could promote osteogenesis in vitro and facilitate the fracture healing in vivo, indicating that TRX may be a promising therapeutic candidate for bone fracture repair.

17.
Toxicol Appl Pharmacol ; 426: 115637, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217758

RESUMO

MicroRNAs (miRNAs) are critical regulatory factors in myocardial ischemia/reperfusion (I/R) injury. The miRNA miR-30c-5p has been reported as a key mediator in several myocardial abnormalities. However, the precise roles and mechanisms of miR-30c-5p in myocardial I/R injury remain not well-studied. This project aimed to explore the potential function of this miRNA in mediating myocardial I/R injury. Significant induction of miR-30c-5p was observed in myocardial tissue of rats with myocardial I/R injury in vivo and cardiomyocytes with hypoxia/re­oxygenation (H/R) injury in vitro. Functional studies elucidated that forced expression of miR-30c-5p in rats effectively reduced infarct area, cardiac apoptosis, oxidative stress and inflammation induced by myocardial I/R injury. Moreover, in vitro cardiomyocytes with forced expression of miR-30c-5p were also protected from H/R-induced apoptosis, oxidative stress and inflammation. Importantly, BTB domain and CNC homology 1 (Bach1) was identified as a new target of miR-30c-5p. miR-30c-5p was shown to promote the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via the inhibition of Bach1. The re-expression of Bach1 reversed miR-30c-5p-mediated-cardioprotective effects against myocardial I/R injury in vivo or H/R injury in vitro. Overall, our results demonstrate that forced expression of miR-30c-5p exhibited beneficial effects against myocardial I/R injury through enhancement of Nrf2 activation via inhibition of Bach1. This work reveals a novel molecular mechanism for myocardial I/R injury at the miRNA level and suggests a therapeutic value of miR-30c-5p in treatment of myocardial I/R injury.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , MicroRNAs , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Masculino , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley
18.
Am J Physiol Endocrinol Metab ; 320(4): E760-E771, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645251

RESUMO

Apigenin (API), a natural plant flavone, is abundantly found in common fruits and vegetables. As a bioactive flavonoid, API exhibits several activities including antiproliferation and anti-inflammation. A recent study showed that API could retard osteoporosis progress, indicating its role in the skeletal system. However, the detailed function and mechanism remain obscure. In the present study, API was found to promote osteogenic differentiation of mesenchymal stem cells (MSCs). And further investigation showed that API could enhance the expression of the critical transcription factor ß-catenin and several downstream target genes of Wnt signaling, thus activated Wnt/ß-catenin signaling. Using a rat femoral fracture model, API was found to improve new bone formation and accelerate fracture healing in vivo. In conclusion, our data demonstrated that API could promote osteogenesis in vitro and facilitate the fracture healing in vivo via activating Wnt/ß-catenin signaling, indicating that API may be a promising therapeutic candidate for bone fracture repair.NEW & NOTEWORTHY1) API promoted osteogenic differentiation of human MSCs in vitro; 2) API facilitated bone formation and accelerated fracture healing in vivo; 3) API stimulated Wnt/ß-catenin signaling during osteogenesis of human MSCs.


Assuntos
Apigenina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Adulto , Animais , Apigenina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/fisiopatologia , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos
19.
Carbohydr Polym ; 257: 117638, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541663

RESUMO

This study concerns the performance evaluation of 6-carboxyl chitin for its wound healing application. 6-Carboxyl chitins were prepared by the oxidation of chitin at C-6 with NaClO/TEMPO/NaBr after α-chitin was pretreated in NaOH/urea solution. The products with different molecular weights were obtained by changing reaction conditions. They all were completely oxidized at C-6 and N-acetylated at C-2 according to FT-IR and NMR results. 6-Carboxyl chitins could stimulate significantly the proliferation of human skin fibroblasts (HSF) and human keratinocytes (HaCaT), and the bioactivities were concentration and Mws dependent. Within the scope of the study, 10-40 kDa of Mws and 10-100 µg/mL of concentrations were most suitable for the HSF proliferation, but the proliferation of HaCaT increased with decreasing the concentration and Mw. In addition, 6-carboxyl chitins could also induce macrophages and fibroblasts to secrete growth factors. Therefore, 6-carboxyl chitins could be expected to be an active ingredient for wound healing.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quitina/química , Brometos/química , Cloratos/química , Óxidos N-Cíclicos/química , Fibroblastos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Queratinócitos/efeitos dos fármacos , Peso Molecular , Oxigênio/química , Compostos de Sódio/química , Células THP-1 , Cicatrização
20.
Eur J Pharmacol ; 893: 173810, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33345859

RESUMO

Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. However, the effective pharmacological approaches remain scanty in clinical practice. As a bioactive flavonoid, apigenin (API) is enriched in common fruits and vegetables. Although pharmacological activities of API have been widely investigated, its biological function in HCC remains obscure. In the present study, we found that API strongly suppressed cell growth and induced apoptosis in HCC cells. Using a xenograft mice model, API was demonstrated to inhibit the in vivo tumor growth. It is known that the long non-coding RNA H19, which is frequently elevated in HCC, plays a vital role in mediating tumorigenesis and cancer progression. Our results demonstrated that H19 was down-regulated by API, and thereby induced the inactivation of the canonical Wnt/ß-catenin signaling. In conclusion, our results demonstrated that API was able to suppress tumor growth of HCC through H19-mediated Wnt/ß-catenin signaling regulatory axis, suggesting that API may be a promising candidate for developing novel therapeutic approaches against liver cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , RNA Longo não Codificante/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...