Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
2.
Nat Commun ; 15(1): 3565, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670999

RESUMO

Bioprinting that can synchronously deposit cells and biomaterials has lent fresh impetus to the field of tissue regeneration. However, the unavoidable occurrence of cell damage during fabrication process and intrinsically poor mechanical stability of bioprinted cell-laden scaffolds severely restrict their utilization. As such, on basis of heart-inspired hollow hydrogel-based scaffolds (HHSs), a mechanical-assisted post-bioprinting strategy is proposed to load cells into HHSs in a rapid, uniform, precise and friendly manner. HHSs show mechanical responsiveness to load cells within 4 s, a 13-fold increase in cell number, and partitioned loading of two types of cells compared with those under static conditions. As a proof of concept, HHSs with the loading cells show an enhanced regenerative capability in repair of the critical-sized segmental and osteoporotic bone defects in vivo. We expect that this post-bioprinting strategy can provide a universal, efficient, and promising way to promote cell-based regenerative therapy.


Assuntos
Bioimpressão , Regeneração Óssea , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Hidrogéis/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Humanos , Osso e Ossos , Camundongos , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Osteoporose/terapia
3.
Regen Biomater ; 11: rbad115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313824

RESUMO

Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.

4.
Nat Commun ; 15(1): 1587, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383668

RESUMO

The power of three-dimensional printing in designing personalized scaffolds with precise dimensions and properties is well-known. However, minimally invasive implantation of complex scaffolds is still challenging. Here, we develop amphiphilic dynamic thermoset polyurethanes catering for multi-material four-dimensional printing to fabricate supportive scaffolds with body temperature-triggered shape memory and water-triggered programmable deformation. Shape memory effect enables the two-dimensional printed pattern to be fixed into temporary one-dimensional shape, facilitating transcatheter delivery. Upon implantation, the body temperature triggers shape recovery of the one-dimensional shape to its original two-dimensional pattern. After swelling, the hydrated pattern undergoes programmable morphing into the desired three-dimensional structure because of swelling mismatch. The structure exhibits unusual soft-to-stiff transition due to the water-driven microphase separation formed between hydrophilic and hydrophobic chain segments. The integration of shape memory, programmable deformability, and swelling-stiffening properties makes the developed dynamic thermoset polyurethanes promising supportive void-filling scaffold materials for minimally invasive implantation.


Assuntos
Hidrogéis , Poliuretanos , Hidrogéis/química , Água , Impressão Tridimensional
5.
Colloids Surf B Biointerfaces ; 236: 113805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422666

RESUMO

Bone implantation inevitably causes damage to surrounding vasculature, resulting in a hypoxic microenvironment that hinders bone regeneration. Although titanium (Ti)-based devices are widely used as bone implants, their inherent bioinert surface leads to poor osteointegration. Herein, a strontium peroxide (SrO2)-decorated Ti implant, Ti_P@SrO2, was constructed through coating with poly-L-lactic acid (PLLA) to alleviate the hypoxic microenvironment and transform the bioinert surface of the implant into a bioactive surface. PLLA degradation resulted in an acidic microenvironment and the release of SrO2 nanoparticles. The acidic microenvironment then accelerated the decomposition of SrO2, resulting in the release of O2 and Sr ions. O2 released from Ti_P@SrO2 can alleviate the hypoxic microenvironment, thus enhancing cell proliferation in an O2-insufficient microenvironment. Furthermore, under hypoxic and normal microenvironments, Ti_P@SrO2 enhanced alkaline phosphatase activity and bone-related gene expression in C3H10T1/2 cells with the continuous release of Sr ions. Meanwhile, Ti_P@SrO2 suppressed M1 polarization and promoted M2 polarization of bone marrow-derived monocytes under hypoxic and normal conditions. Furthermore, in a rat implantation model, the implant enhanced new bone formation and improved osteointegration after modification with SrO2. In summary, the newly designed O2- and Sr ion-releasing Ti implants are promising for applications in bone defects.


Assuntos
Próteses e Implantes , Titânio , Animais , Ratos , Titânio/farmacologia , Regeneração Óssea , Osso e Ossos , Íons , Osteogênese , Propriedades de Superfície , Estrôncio/farmacologia , Osseointegração
6.
ACS Biomater Sci Eng ; 9(12): 6849-6859, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942941

RESUMO

The development of magnesium-derived biomaterials is one of the most promising research in bone tissue engineering, and related strategies have been extensively used for tendon, skull, cartilage, and bone regeneration. Also, alendronate, a well-recognized drug for osteoporosis treatment, has recently attracted a great deal of attention for bone repair. However, rapid corrosion in vivo of Mg2+ and low systemic bioavailability of alendronate are the main limitations hampering their full exploitation. In this work, by means of physical and chemical cross-linking conjugating magnesium-metal-organic frameworks (Mg-MOFs) and bone-targeting alendronate to biocompatible gelatin scaffolds, a facile method is developed for the preparation of organic/inorganic nanocomposite gel scaffolds. The results affirmed that the nanocomposite gel scaffolds possessed excellent biocompatibility, continuous slow release of Mg2+ and alendronate, strong bone affinity, and bone regeneration. It is noteworthy that the continuous slow release of Mg2+ and alendronate could induce the macrophage switch to the M2 phenotype and promote osteogenic differentiation in the early stage, resulting in improved bone regeneration during implanting the scaffolds into the distal femoral. In summary, Mg-MOFs-loaded alendronate-modified gelatin gel scaffolds have been developed, exhibiting great potential for bone regenerative.


Assuntos
Difosfonatos , Osteogênese , Difosfonatos/farmacologia , Alendronato/farmacologia , Magnésio/farmacologia , Gelatina/farmacologia , Nanogéis , Alicerces Teciduais , Regeneração Óssea
7.
Neuromolecular Med ; 25(4): 616-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796401

RESUMO

Anxiety manifestations and cognitive dysfunction are common sequelae in patients with sepsis-associated encephalopathy (SAE). Microglia-mediated inflammatory signaling is involved in anxiety, depression, and cognitive dysfunction during acute infection with bacterial lipopolysaccharide (LPS). However, the molecular mechanisms underlying microglia activation and behavioral and cognitive deficits in sepsis have not been in fully elucidated. Based on previous research, we speculated that the CD137 receptor/ligand system modulates microglia function during sepsis to mediate classical neurological SAE symptoms. A murine model of SAE was established by injecting male C57BL/6 mice with LPS, and cultured mouse BV2 microglia were used for in vitro assays. RT-qPCR, immunofluorescence staining, flow cytometry, and ELISA were used to assess microglial activation and the expression of CD137L and inflammation-related cytokines in the mouse hippocampus and in cultured BV2 cells. In addition, behavioral tests were conducted in assess cognitive performance and behavioral distress. Immunofluorescence and RT-qPCR analyses showed that hippocampal expression of CD137L was upregulated in activated microglia following LPS treatment. Pre-treatment with the CD137L neutralizing antibody TKS-1 significantly reduced CD137L levels, attenuated the expression of M1 polarization markers in microglia, and inhibited the production of TNF-α, IL-1ß, and IL-6 in both LPS-treated mice and BV2 cells. Conversely, stimulation of CD137L signaling by recombinant CD137-Fc fusion protein activated the synthesis and release of pro-inflammatory cytokines in cultures BV2 microglia. Importantly, open field, elevated plus maze, and Y-maze spontaneous alternation test results indicated that TKS-1 administration alleviated anxiety-like behavior and spatial memory decline in mice with LPS-induced SAE. These findings suggest that CD137L upregulation in activated microglia critically contributes to neuroinflammation, anxiety-like behavior, and cognitive dysfunction in the mouse model of LPS-induced sepsis. Therefore, therapeutic modulation of the CD137L/CD137 signaling pathway may represent an effective way to minimize brain damage and prevent cognitive and emotional deficits associated with SAE.


Assuntos
Ligante 4-1BB , Encefalopatia Associada a Sepse , Sepse , Animais , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Ligante 4-1BB/efeitos dos fármacos , Ligante 4-1BB/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
8.
Adv Healthc Mater ; 12(32): e2301984, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740829

RESUMO

Chronic hypoxia and ischemia make diabetic wounds non-healing. Cellular functions of diabetic chronic wounds are inhibited under a pathological environment. Therefore, this work develops a composite hydrogel system to promote diabetic wound healing. The composite hydrogel system consists of ε-poly-lysine (EPL), calcium peroxide (CP), and borosilicate glass (BG). The hydrogel supplies continuous dissolved oxygen molecules to the wound that can penetrate the skin tissue to restore normal cellular function and promote vascular regeneration. Biofunctional ions released from BGs can recruit more macrophages through neovascularization and modulate macrophage phenotypic transformation. Combining oxygen-mediated vascular regeneration and ion-mediated inflammatory regulation significantly accelerated diabetic wound healing. These findings indicate that this composite hydrogel system holds promise as a novel tissue engineering material.


Assuntos
Diabetes Mellitus , Cicatrização , Humanos , Hidrogéis/farmacologia , Hipóxia , Íons
9.
J Mol Histol ; 54(6): 725-738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676534

RESUMO

Neuroinflammation is associated with the pathophysiology of depression. The molecular mechanism of depressive-like behavior caused by sepsis-associated encephalopathy (SAE) is incompletely understood. J147 (an analog of curcumin) has been reported to improve memory and has neuroprotective activity, but its biological function in the depressive-like behavior observed in SAE is not known. We investigated the effects of J147 on lipopolysaccharide (LPS)-induced neuroinflammatory, depressive-like behaviors, and the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signal pathway in the mouse hippocampus and microglia (BV2 cells). The forced-swimming test (FST) and tail-suspension test (TST) were undertaken for assessment of depressive-like behaviors. Expression of the proinflammatory genes interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were measured using RT-qPCR and ELISA. Microglia activation was detected using immunofluorescence staining. The TLR4/NF-κB signaling pathway was studied using western blotting and immunofluorescence staining. J147 pretreatment markedly downregulated expression of IL-6, IL-1ß, and TNF-α, and the mean fluorescence intensity of ionized calcium-binding adapter protein-1 in microglia. J147 restrained LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB), inhibitor of nuclear factor kappa B (IκB) degradation, and TLR4 activation in microglia. J147 administration inhibited bodyweight loss, mortality, microglia activation, and depressive-like behaviors in LPS-treated mice. In conclusion, J147 ameliorated the sepsis-induced depressive-like behaviors induced by neuroinflammation through attenuating the TLR4/NF-κB signaling pathway in microglia.


Assuntos
NF-kappa B , Sepse , Camundongos , Animais , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sepse/complicações , Sepse/metabolismo , Microglia/metabolismo
10.
BMC Neurol ; 23(1): 317, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674139

RESUMO

Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.


Assuntos
Curcumina , Neuropatias Diabéticas , Humanos , Ansiedade , Transtornos de Ansiedade
11.
Front Bioeng Biotechnol ; 11: 1210637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600300

RESUMO

In the past 4 decades, many articles have reported on the effects of the piezoelectric effect on bone formation and the research progress of piezoelectric biomaterials in orthopedics. The purpose of this study is to comprehensively evaluate all existing research and latest developments in the field of bone piezoelectricity, and to explore potential research directions in this area. To assess the overall trend in this field over the past 40 years, this study comprehensively collected literature reviews in this field using a literature retrieval program, applied bibliometric methods and visual analysis using CiteSpace and R language, and identified and investigated publications based on publication year (1984-2022), type of literature, language, country, institution, author, journal, keywords, and citation counts. The results show that the most productive countries in this field are China, the United States, and Italy. The journal with the most publications in the field of bone piezoelectricity is the International Journal of Oral & Maxillofacial Implants, followed by Implant Dentistry. The most productive authors are Lanceros-Méndez S, followed by Sohn D.S. Further research on the results obtained leads to the conclusion that the research direction of this field mainly includes piezoelectric surgery, piezoelectric bone tissue engineering scaffold, manufacturing artificial cochleae for hearing loss patients, among which the piezoelectric bone tissue engineering scaffold is the main research direction in this field. The piezoelectric materials involved in this direction mainly include polyhydroxybutyrate valerate, PVDF, and BaTiO3.

12.
Biomed Mater ; 18(5)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604162

RESUMO

As one of the key factors influencing the outcome of guided bone regeneration, the currently used xenografts possess insufficient capability in osteogenesis. With the aim of improving the osteogenic performance of xenografts, porcine bone-derived hydroxyapatite (PHA) was prepared and subsequently coated by magnesium-doped nano hydroxyapatite (nMgHA, 10%, 20%, and 30% of Mg/Ca + Mg) through a straightforward and cost-efficient approach. The physiochemical and biological properties of nMgHA/PHAs were examinedin vitroandin vivo. The inherent three-dimensional (3D) porous framework with the average pore size of 300 µm was well preserved in nMgHA/PHAs. Meanwhile, excess magnesium released from the so-called 'surface pool' of PHA was verified. In contrast, slower release of magnesium at lower concentrations was detected for nMgHA/PHAs. Significantly more newly-formed bone and microvessels were observed in 20%nMgHA/PHA than the other specimens. With the limitations of the present study, it could be concluded that PHA coated by 20%nMgHA may have the optimized osteogenic performance due to the elimination of the excess magnesium from the 'surface pool', the preservation of the inherent 3D porous framework with the favorable pore size, and the release of magnesium at an appropriate concentration that possessed osteoimmunomodulatory effects on macrophages.


Assuntos
Magnésio , Osteogênese , Humanos , Suínos , Animais , Xenoenxertos , Regeneração Óssea , Durapatita
13.
Bone Res ; 11(1): 40, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482549

RESUMO

Numerous small-molecule amines (SMAs) play critical roles in maintaining bone homeostasis and promoting bone regeneration regardless of whether they are applied as drugs or biomaterials. On the one hand, SMAs promote bone formation or inhibit bone resorption through the regulation of key molecular signaling pathways in osteoblasts/osteoclasts; on the other hand, owing to their alkaline properties as well as their antioxidant and anti-inflammatory features, most SMAs create a favorable microenvironment for bone homeostasis. However, due to a lack of information on their structure/bioactivity and underlying mechanisms of action, certain SMAs cannot be developed into drugs or biomaterials for bone disease treatment. In this review, we thoroughly summarize the current understanding of SMA effects on bone homeostasis, including descriptions of their classifications, biochemical features, recent research advances in bone biology and related regulatory mechanisms in bone regeneration. In addition, we discuss the challenges and prospects of SMA translational research.

14.
Adv Mater ; 35(25): e2300313, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36939167

RESUMO

Osteosarcoma occurs in children and adolescents frequently and leads to a high fatality rate. Although surgical resection is the most common methods in clinic, patients always suffer from tumor metastasis and recurrence and it is difficult for them to self-repair large bone defects. Furthermore, the postoperative infection from bacteria triggers an inflammatory response and hinders the bone-repair process. This work demonstrates a gadolinium (Gd)-complex and molybdenum sulfide (MoS2 ) co-doped N-acryloyl glycinamide (NAGA)/gelatin methacrylate (Gel-MA) multifunctional hydrogel (GMNG). The combination between NAGA and Gel-MA endows the GMNG with attractive mechanical properties and controllable degradation ability. The MoS2 improves the hydrogel system, which has excellent photothermal ability to kill tumor cells and inhibit bacterial infection both in vitro and in vivo. Based on the Gd-complex, the magnetic resonance imaging (MRI) effect can be used to monitor the position and degradation situation of the hydrogel. Notably, accompanied by the degradation of GMNG hydrogel, the gradually released Gd3+ from the hydrogel exhibits osteogenic property and could promote new bone formation efficiently in vivo. Therefore, this strategy supplies a method to prepare multifunctional bone-defect-repair materials and is expected to represent a significant guidance and reference to the development of biomaterials for bone tissue engineering.


Assuntos
Neoplasias Ósseas , Engenharia Tecidual , Criança , Humanos , Adolescente , Molibdênio , Recidiva Local de Neoplasia , Regeneração Óssea , Alicerces Teciduais , Osteogênese , Remodelação Óssea , Hidrogéis , Neoplasias Ósseas/terapia
15.
Bioact Mater ; 26: 231-248, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36936808

RESUMO

The regeneration of alveolar bone is still clinical challenge, particularly accompanied with diabetes, causing metabolic disorder with a protracted low-grade inflammatory phenotype. As a result, the anticipated loading of biomaterials is highly suspicious in spontaneous modulation of cells function, which is mostly disturbed by constant inflammation. In this study, we developed glucose and hydrogen peroxide dual-responsive borosilicate glass (BSG) scaffolds loaded with epigallocatechin gallate (EGCG) to synergistically modulate the abnormal inflammation of diabetic alveolar bone defects. It was found that the release of EGCG by BSG could directly regulate the shift of macrophages from M1 to the M2 phenotype by promoting autophagy and lessening the inhibition of autophagic flux. Moreover, EGCG can also indirectly regulate the polarization phenotype of macrophages by reducing the activation of NF-κb in stem cells and restoring its immunoregulatory capacity. Therefore, the addition of EGCG to BSG scaffold in diabetes allows for a more striking modulation of the macrophage phenotype in a timely manner. The altered macrophage phenotype reduces local inflammation and thus increases the ability to repair diabetic alveolar bone, showing promise for the treatment of alveolar defect in diabetic patients.

16.
Biomimetics (Basel) ; 8(1)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975320

RESUMO

The biological and mechanical functions of bone rely critically on the inorganic constituent, which can be termed as bone apatite nanocrystal. It features a hydroxylapatite-like crystalline structure, complex chemical compositions (e.g., carbonate-containing and calcium- and hydroxyl-deficient), and fine geometries and properties. The long research with vast literature across broad spectra of disciplines and fields from chemistry, crystallography, and mineralogy, to biology, medical sciences, materials sciences, mechanics, and engineering has produced a wealth of knowledge on the bone apatite nanocrystal. This has generated significant impacts on bioengineering and industrial engineering, e.g., in developing new biomaterials with superior osteo-inductivities and in inspiring novel strong and tough composites, respectively. Meanwhile, confusing and inconsistent understandings on the bone mineral constituent should be addressed to facilitate further multidisciplinary progress. In this review, we present a mineralogical account of the bone-related ideal apatite mineral and then a brief historical overview of bone mineral research. These pave the road to understanding the bone apatite nanocrystal via a material approach encompassing crystalline structure, diverse chemical formulae, and interesting architecture and properties, from which several intriguing research questions emerge for further explorations. Through providing the classical and latest findings with decent clearness and adequate breadth, this review endeavors to promote research advances in a variety of related science and engineering fields.

17.
Adv Healthc Mater ; 12(20): e2300039, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37000691

RESUMO

Activation of coagulation cascades, especially FX and prothrombin, prevents blood loss and reduces mortality from hemorrhagic shock. Inorganic salts are efficient but cannot stop bleeding completely in hemorrhagic events, and rebleeding carries a significant mortality risk. The coagulation mechanism of biominerals has been oversimplified in the past two decades, limiting the creation of novel hemostats. Herein, at the interface, the affinity of proteins, the protease activity, fibrinolysis, hydration shell, and dynamic microenvironment are monitored at the protein level. Proteomic analysis reveals that fibrinogen and antithrombin III's affinity for kaolin's interface causes a weak thrombus and rebleeding during hemostasis. Inspiringly, amorphous bioactive glass (BG) with a transient-dynamic ion microenvironment breaches the hydration layer barrier and selectively and slightly captures procoagulant components of kiniogen-1, plasma kallikrein, FXII, and FXI proteins on its interface, concurrently generating a continuous biocatalytic interface to rapidly activate both intrinsic and extrinsic coagulation pathways. Thus, prothrombin complexes are successfully hydrolyzed to thrombin without platelet membrane involvement, speeding production of high-strength clots. This study investigates how the interface of inorganic salts assists in coagulation cascades from a more comprehensive micro-perspective that may help elucidate the clinical application issues of kaolin-gauze and pave the way to new materials for managing hemorrhage.


Assuntos
Protrombina , Trombose , Humanos , Caulim , Proteômica , Sais , Coagulação Sanguínea , Hemorragia
18.
Bioact Mater ; 23: 101-117, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36406252

RESUMO

Injectable bone biomaterials like bone cement should be designed and fabricated with certain biological criteria, which include: 1) recruitment and polarization of the macrophages from M1 (pro-inflammatory) to M2 (anti-inflammatory) phenotype, 2) enhance vascularization, and 3) activate osteogenic differentiation of bone marrow-derived stem cells to promote bone healing. So far, no injectable biomaterials could spontaneously regulate the entire bone healing process that involves inflammation, angiogenesis, and osteogenesis. Therefore, in this study, we designed bone cement comprised of strontium and copper-incorporated borosilicate glass (Sr/Cu-BSG) in the liquid phase of chitosan to modulate bone healing. In vitro studies showed that the controlled release of Sr and Cu ions up-regulated anti-inflammatory genes(IL-1Ra and TGF-ß1) while down-regulating pro-inflammatory genes(IL-1ß and IL-6) in macrophages at 3 days. Sr and Cu ions also increased the expressions of angiogenic genes (VEGF and bFGF) in HUVECs at 5 days and osteogenic genes (Runx-2, OCN, and OPN) in hBMSCs at 7, 14, and 21 days. 5Sr3Cu-BSG bone cement exhibited the best anti-inflammatory, angiogenic, and osteogenic properties among the bone cement groups with different Sr and Cu ratios. Short-term and long-term implantation of Sr/Cu-BSGs in femoral condylar bone defects of rats and rabbits confirmed the in vitro results, where the degradation rate of Sr/Cu-BSG matched the bone healing rate. Similar to in vitro, the 5Sr3Cu-BSG group also showed the highest bone formation in vivo. Excellent physical and chemical properties, along with its bone repairing ability, make the Sr/Cu-BSG bone cement a good candidate biomaterial for treating bone defects.

19.
ACS Nano ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583476

RESUMO

Direct neuronal reprogramming of somatic cells into induced neurons (iNs) has been recently established as a promising approach to generating neuron cells. Previous studies have reported that the biophysical cues of the in vitro microenvironment are potent modulators in the cell fate decision; thus, the present study explores the effects of a customized pattern (named colloidal self-assembled patterns, cSAPs) on iN generation from human fibroblasts using small molecules. The result revealed that the cSAP, composed of binary particles in a hexagonal-close-packed (hcp) geometry, is capable of improving neuronal reprogramming efficiency and steering the ratio of the iN subtypes. Cells exhibited distinct cell morphology, upregulated cell adhesion markers (i.e., SDC1 and ITGAV), enriched signaling pathways (i.e., Hippo and Wnt), and chromatin remodeling on the cSAP compared to those on the control substrates. The result also showed that the iN subtype specification on cSAP was surface-dependent; therefore, the defined physicochemical cue from each cSAP is exclusive. Our findings show that direct cell reprogramming can be manipulated through specific biophysical cues on the artificial matrix, which is significant in cell transdifferentiation and lineage conversion.

20.
ACS Appl Mater Interfaces ; 14(46): 51711-51727, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354323

RESUMO

PMMA bone cement has been clinically used for decades in vertebroplasty due to its high mechanical strength and satisfactory injectability. However, the interface between bone and PMMA is fragile and more prone to refracture in situ because PMMA lacks a proper biological response from the host bone with minimal bone integration and dense fibrous tissue formation. Here, we modified PMMA by incoporating borosilicate glass (BSG) with a dual glass network of [BO3] and [SiO4], which spontaneously modulates immunity and osteogenesis. In particular, the BSG modified PMMA bone cement (abbreviated as BSG/PMMA cement) provided an alkaline microenvironment that spontaneously balanced the activities between osteoclasts and osteoblasts. Furthermore, the trace elements released from the BSGs enhanced the osteogenesis to strengthen the interface between the host bone and the implant. This study shows the first clinical case after implantation of BSG/PMMA for three months using the dual-energy CT, which found apatite nucleation around PMMA instead of fibrous tissues, indicating the biological interface was formed. Therefore, BSG/PMMA is promising as a biomaterial in vertebroplasty, overcoming the drawback of PMMA by improving the biological response from the host bone.


Assuntos
Cimentos Ósseos , Vertebroplastia , Polimetil Metacrilato , Força Compressiva , Apatitas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...