Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562900

RESUMO

Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.

2.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260460

RESUMO

Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. From a screen of human airway derived cell lines that express varying levels of ACE2/TMPRSS2, we found a subset that express comparably high endogenous levels of ACE2 but surprisingly did not support SARS-CoV-2 replication. Here we report that this resistance is mediated by a basally active cGAS-STING pathway culminating in interferon (IFN)-mediated restriction of SARS-CoV-2 replication at a post-entry step. Pharmacological inhibition of JAK1/2, depletion of the IFN-α receptor and cGAS-STING pathway effectors substantially increased SARS-CoV-2 replication in these cell models. While depletion of cGAS or STING was sufficient to reduce the preexisting levels of IFN-stimulated genes (ISGs), SARS-CoV-2 infection in STING knockout cells independently induced ISG expression. Remarkably, SARS-CoV-2-induced ISG expression in STING knockout cell as well as in primary human airway cultures was limited to uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway, but not viral sensing or IFN production, in productively infected cells. Of note, SARS-CoV-2-infected primary human airway cells also displayed markedly lower levels of STING expression, raising the possibility that SARS-CoV-2 can target STING expression or preferentially infect cells that express low levels of STING. Finally, ectopic ACE2 overexpression overcame the IFN-mediated blocks, suggesting the ability of SARS-CoV-2 to overcome these possibly saturable blocks to infection. Our study highlights that in addition to viral receptors, basal activation of the cGAS-STING pathway and innate immune defenses may contribute to defining SARS-CoV-2 cellular tropism.

3.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104040

RESUMO

DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.


Assuntos
Síndrome de Kartagener , Animais , Humanos , Síndrome de Kartagener/genética , Proteômica , Mutação , Fenótipo , Proteínas/genética , Dosagem de Genes
5.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36712068

RESUMO

DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift null deletion in Dnaaf5 . Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partial preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. While transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. Together, these findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies. Brief Summary: A mouse model of human DNAAF5 primary ciliary dyskinesia variants reveals gene dosage effects of mutant alleles and tissue-specific molecular requirements for cilia motor assembly.

6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121658

RESUMO

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismo
7.
Cell Rep ; 37(2): 109803, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644581

RESUMO

Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Células Dendríticas/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Transcrição Gênica , Proteínas não Estruturais Virais/metabolismo , Células A549 , Animais , Sítios de Ligação , Núcleo Celular/virologia , Cromatina/genética , Cromatina/virologia , Células Dendríticas/virologia , Células Epiteliais/virologia , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Pulmão/virologia , Complexo Mediador/genética , Complexo Mediador/metabolismo , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas não Estruturais Virais/genética
8.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673071

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Assuntos
Biomarcadores/química , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores CCR2/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Molecular , Tomografia por Emissão de Pósitrons
9.
Proc Natl Acad Sci U S A ; 115(6): E1221-E1228, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358401

RESUMO

Motile cilia are characterized by dynein motor units, which preassemble in the cytoplasm before trafficking into the cilia. Proteins required for dynein preassembly were discovered by finding human mutations that result in absent ciliary motors, but little is known about their expression, function, or interactions. By monitoring ciliogenesis in primary airway epithelial cells and MCIDAS-regulated induced pluripotent stem cells, we uncovered two phases of expression of preassembly proteins. An early phase, composed of HEATR2, SPAG1, and DNAAF2, preceded other preassembly proteins and was independent of MCIDAS regulation. The early preassembly proteins colocalized within perinuclear foci that also contained dynein arm proteins. These proteins also interacted based on immunoprecipitation and Förster resonance energy transfer (FRET) studies. FRET analysis of HEAT domain deletions and human mutations showed that HEATR2 interacted with itself and SPAG1 at multiple HEAT domains, while DNAAF2 interacted with SPAG1. Human mutations in HEATR2 did not affect this interaction, but triggered the formation of p62/Sequestosome-1-positive aggregates containing the early preassembly proteins, suggesting that degradation of an early preassembly complex is responsible for disease and pointing to key regions required for HEATR2 scaffold stability. We speculate that HEATR2 is an early scaffold for the initiation of dynein complex assembly in motile cilia.


Assuntos
Antígenos de Superfície/metabolismo , Cílios/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , Mucosa Respiratória/fisiologia , Animais , Antígenos de Superfície/genética , Dineínas do Axonema , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fenótipo , Proteínas/genética , Mucosa Respiratória/citologia
10.
Radiology ; 283(3): 758-768, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28045644

RESUMO

Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Pneumonia/diagnóstico por imagem , Pneumonia/imunologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/análise , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos
11.
J Biol Chem ; 291(12): 6569-82, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26833564

RESUMO

Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of ß-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential ß-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific ß-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/ß-catenin but not CBP/ß-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/ß-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/ß-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/ß-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting ß-catenin to modulate adult progenitor cell behavior in disease.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Proteína p300 Associada a E1A/fisiologia , Proteína Quinase C/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/fisiologia , Células Epiteliais Alveolares/fisiologia , Animais , Aquaporina 5/genética , Aquaporina 5/metabolismo , Linhagem Celular , Impedância Elétrica , Expressão Gênica , Camundongos , Camundongos Knockout , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Ratos , Via de Sinalização Wnt , Proteína Wnt-5a
12.
J Immunol ; 194(8): 4039-48, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25762783

RESUMO

Neutrophils are critical mediators of innate immune responses and contribute to tissue injury. However, immune pathways that regulate neutrophil recruitment to injured tissues during noninfectious inflammation remain poorly understood. DAP12 is a cell membrane-associated protein that is expressed in myeloid cells and can either augment or dampen innate inflammatory responses during infections. To elucidate the role of DAP12 in pulmonary ischemia/reperfusion injury (IRI), we took advantage of a clinically relevant mouse model of transplant-mediated lung IRI. This technique allowed us to dissect the importance of DAP12 in tissue-resident cells and those that infiltrate injured tissue from the periphery during noninfectious inflammation. Macrophages in both mouse and human lungs that have been subjected to cold ischemic storage express DAP12. We found that donor, but not recipient, deficiency in DAP12 protected against pulmonary IRI. Analysis of the immune response showed that DAP12 promotes the survival of tissue-resident alveolar macrophages and contributes to local production of neutrophil chemoattractants. Intravital imaging demonstrated a transendothelial migration defect into DAP12-deficient lungs, which can be rescued by local administration of the neutrophil chemokine CXCL2. We have uncovered a previously unrecognized role for DAP12 expression in tissue-resident alveolar macrophages in mediating acute noninfectious tissue injury through regulation of neutrophil trafficking.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Regulação da Expressão Gênica/imunologia , Transplante de Pulmão , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Disfunção Primária do Enxerto/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Humanos , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Neutrófilos/patologia , Disfunção Primária do Enxerto/genética , Disfunção Primária do Enxerto/patologia
13.
Stem Cells ; 32(12): 3245-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25103188

RESUMO

The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63(+) basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps are poorly defined. Here, we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb(+) cells were identified as p63(-) and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63(-) population with failed maturation of Foxj1(+) ciliated cells as well as Scbg1a1(+) and Muc5ac(+) secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb(+) cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63(-) Myb(+) population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Células-Tronco/citologia , Animais , Linhagem da Célula/fisiologia , Células Cultivadas , Humanos , Camundongos , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo
14.
Am J Respir Cell Mol Biol ; 46(4): 446-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22033264

RESUMO

Previous studies have demonstrated a female disadvantage in airway diseases, such as asthma and bronchiectasis. The basis for this sex disparity is unknown. We hypothesized that the female sex hormone, progesterone (P4), inhibits functions of the normal airway mucociliary apparatus. P4 receptor (PR) expression was evaluated in human lung and cultured primary human airway epithelial cells isolated from male and female lung transplant donors. PR expression was restricted to the proximal region of the cilia of airway epithelia, and was similar in men and women. Expression of isoform PR-B was more abundant than PR-A in cells from both sexes. Airway epithelial cell exposure to P4 decreased cilia beat frequency (CBF) by 42.3% (±7.2). Inhibition of CBF was prevented by coadministration of P4 with the active form of estrogen, 17ß-estradiol, or the PR antagonist, mifepristone. P4 inhibition was time and dose dependent, with a significant decrease by 8 hours and maximal effect at 24 hours, accompanied by translocation of PR from the cilia to the nucleus. Inhibition of cilia beat was also prevented by treatment of cells with actinomycin D, suggesting that CBF inhibition is a transcriptionally mediated event. Together, these findings indicate that sex hormones influence the function of a key component of the mucociliary apparatus. These mechanisms may contribute to the sex disparity present in airway diseases and provide therapeutic targets for the treatment of these debilitating airway diseases.


Assuntos
Células Epiteliais/fisiologia , Estradiol/metabolismo , Pulmão/citologia , Progesterona/metabolismo , Células Cultivadas , Cílios/efeitos dos fármacos , Dactinomicina/farmacologia , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Antagonistas de Hormônios/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Mifepristona/farmacologia , Progesterona/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Caracteres Sexuais
15.
Am J Respir Cell Mol Biol ; 43(6): 731-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20118219

RESUMO

Cilia are traditionally classified as motile or primary. Motile cilia are restricted to specific populations of well-differentiated epithelial cells, including those in the airway, brain ventricles, and oviducts. Primary cilia are nonmotile, solitary structures that are present in many cell types, and often have sensory functions such as in the retina and renal tubules. Primary cilia were also implicated in the regulation of fundamental processes in development. Rare depictions of primary cilia in embryonic airways led us to hypothesize that primary cilia in airway cells are temporally related to motile ciliogenesis. We identified primary cilia in undifferentiated, cultured airway epithelial cells from mice and humans and in developing lungs. The solitary cilia in the airways express proteins considered unique to primary cilia, including polycystin-1 and polycystin-2. A temporal analysis of airway epithelial cell differentiation showed that cells with primary cilia acquire markers of motile ciliogenesis, suggesting that motile ciliated cells originate from primary ciliated cells. Whereas motile ciliogenesis requires Foxj1, primary ciliogenesis does not, and the expression of Foxj1 was associated with a loss of primary cilia, just before the appearance of motile cilia. Primary cilia were not found in well-differentiated airway epithelial cells. However, after injury, they appear in the luminal layer of epithelium and in basal cells. The transient nature of primary cilia, together with the temporal and spatial patterns of expression in the development and repair of airway epithelium, suggests a critical role of primary cilia in determining outcomes during airway epithelial cell differentiation.


Assuntos
Cílios/metabolismo , Células Epiteliais/metabolismo , Movimento/fisiologia , Organogênese , Traqueia/citologia , Traqueia/embriologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Linhagem Celular , Proliferação de Células , Células Cultivadas , Cílios/ultraestrutura , Cães , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Fatores de Transcrição Forkhead/metabolismo , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Modelos Biológicos , Canais de Cátion TRPP/metabolismo , Fatores de Tempo
16.
Nat Cell Biol ; 9(8): 970-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17643114

RESUMO

Cysteine proteases play an important part in human pathobiology. This report shows the participation of cathepsin L (CatL) in adipogenesis and glucose intolerance. In vitro studies demonstrate the role of CatL in the degradation of the matrix protein fibronectin, insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R), essential molecules for adipogenesis and glucose metabolism. CatL inhibition leads to the reduction of human and murine pre-adipocyte adipogenesis or lipid accumulation, protection of fibronectin from degradation, accumulation of IR and IGF-1R beta-subunits, and an increase in glucose uptake. CatL-deficient mice are lean and have reduced levels of serum glucose and insulin but increased levels of muscle IR beta-subunits, fibronectin and glucose transporter (Glut)-4, although food/water intake and energy expenditure of these mice are no less than their wild-type littermates. Importantly, the pharmacological inhibition of CatL also demonstrates reduced body weight gain and serum insulin levels, and increased glucose tolerance, probably due to increased levels of muscle IR beta-subunits, fibronectin and Glut-4 in both diet-induced obese mice and ob/ob mice. Increased levels of CatL in obese and diabetic patients suggest that this protease is a novel target for these metabolic disorders.


Assuntos
Adipogenia/fisiologia , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Intolerância à Glucose , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Peso Corporal , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Catepsina L , Catepsinas/antagonistas & inibidores , Catepsinas/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Cisteína Endopeptidases/genética , Compostos de Epóxi/metabolismo , Fibronectinas/metabolismo , Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , PPAR gama/genética , PPAR gama/metabolismo , Piridinas/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo
17.
J Cell Sci ; 120(Pt 11): 1868-76, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17488776

RESUMO

Programs that direct cellular differentiation are dependent on the strict temporal expression of regulatory factors that can be provided by Rho GTPases. Ciliogenesis is a complex sequence of events involving the generation and docking of basal bodies at the apical membrane, followed by ciliary axoneme generation. Although a cilia proteome has been assembled, programs that direct ciliated cell differentiation are not well established, particularly in mammalian systems. Using mouse primary culture airway epithelial cells, we identified a critical stage of ciliogenesis requiring the temporal establishment of an apical web-like structure of actin for basal body docking and subsequent axoneme growth. Apical web formation and basal body docking were prevented by interruption of actin remodeling and were dependent on RhoA activation. Additional evidence for this program was provided by analysis of Foxj1-null mice that failed to dock basal bodies and lacked apical actin. Foxj1 expression coincided with actin web formation, activated RhoA and RhoB, and persisted despite RhoA inhibition, suggesting that Foxj1 promoted RhoA during ciliogenesis. Apical ezrin localization was also dependent on Foxj1, actin remodeling, and RhoA, but was not critical for ciliogenesis. Thus, temporal Foxj1 and RhoA activity are essential regulatory events for cytoskeletal remodeling during mammalian ciliogenesis.


Assuntos
Actinas/metabolismo , Diferenciação Celular , Polaridade Celular , Cílios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Exotoxinas/farmacologia , Humanos , Camundongos , Células NIH 3T3 , Transporte Proteico/efeitos dos fármacos , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/ultraestrutura , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
18.
Circ Res ; 96(3): 368-75, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15653570

RESUMO

The pathogenesis of atherosclerosis and abdominal aortic aneurysm involves substantial proteolysis of the arterial extracellular matrix. The lysosomal cysteine proteases can exert potent elastolytic and collagenolytic activity. Human atherosclerotic plaques have increased cysteine protease content and decreased levels of the endogenous inhibitor cystatin C, suggesting an imbalance that would favor matrix degradation in the arterial wall. This study tested directly the hypothesis that impaired expression of cystatin C alters arterial structure. Cystatin C-deficient mice (Cyst C-/-) were crossbred with apolipoprotein E-deficient mice (ApoE-/-) to generate cystatin C and apolipoprotein E-double deficient mice (Cyst C-/-ApoE-/-). After 12 weeks on an atherogenic diet, cystatin C deficiency yielded significantly increased tunica media elastic lamina fragmentation, decreased medial size, and increased smooth muscle cell and collagen content in aortic lesions of ApoE-/- mice. Cyst C-/-ApoE-/- mice also showed dilated thoracic and abdominal aortae compared with control ApoE-/- mice, although atheroma lesion size, intimal macrophage accumulation, and lipid core size did not differ between these mice. These findings demonstrate directly the importance of cysteine protease/protease inhibitor balance in dysregulated arterial integrity and remodeling during experimental atherogenesis.


Assuntos
Aorta Abdominal/química , Aorta Abdominal/metabolismo , Aorta Torácica/química , Aorta Torácica/metabolismo , Apolipoproteínas E/deficiência , Membrana Basal/metabolismo , Cistatinas/deficiência , Dilatação Patológica/genética , Animais , Aorta Abdominal/patologia , Aorta Torácica/patologia , Apolipoproteínas E/genética , Arteriosclerose/etiologia , Arteriosclerose/genética , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Cistatina C , Cisteína Endopeptidases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Mutantes , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Túnica Média/patologia
19.
Circulation ; 109(25): 3149-53, 2004 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15197138

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine expressed widely by vascular cells. However, scant in vivo evidence supports direct participation of MIF in atherogenesis. Therefore, we investigated whether deficiency of MIF modulates atherosclerotic lesion formation and composition in low-density lipoprotein receptor-deficient (LDLr-/-) mice. METHODS AND RESULTS: MIF-/-LDLr-/- and LDLr-/- mice were generated and consumed an atherogenic diet for 12 or 26 weeks. MIF-/-LDLr-/- mice had significantly reduced abdominal aorta lipid deposition and intimal thickening from aortic arch throughout the abdominal aorta compared with LDLr-/- mice. Marked retardation of atherosclerosis over time in MIF-deficient mice accompanied decreased lesion cell proliferation. At 26 weeks, 20% of MIF-deficient mice developed only early, fatty streak-like lesions, whereas >80% of LDLr-/- mice developed advanced lesions containing calcification and lipid cores. Analysis of smooth muscle cells from mouse aortae demonstrated that MIF deficiency reduced smooth muscle cell proliferation, cysteine protease expression, and elastinolytic and collagenolytic activities. CONCLUSIONS: Deficiency of MIF reduces atherogenesis in LDLr-/- mice. These results provide novel insight into inflammatory pathways operating in atheromata and identify a new potential target for modulating atherogenesis.


Assuntos
Arteriosclerose/metabolismo , Fatores Inibidores da Migração de Macrófagos/fisiologia , Receptores de LDL/deficiência , Animais , Aorta Abdominal/química , Aorta Abdominal/patologia , Arteriosclerose/genética , Arteriosclerose/patologia , Arteriosclerose/prevenção & controle , Divisão Celular , Colagenases/deficiência , Colagenases/metabolismo , Cruzamentos Genéticos , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/metabolismo , Dieta Aterogênica , Indução Enzimática , Predisposição Genética para Doença , Oxirredutases Intramoleculares , Lipídeos/análise , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Elastase Pancreática/deficiência , Elastase Pancreática/metabolismo , Receptores de LDL/genética , Receptores de LDL/fisiologia
20.
J Clin Invest ; 111(6): 897-906, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12639996

RESUMO

Human atherosclerotic lesions overexpress the lysosomal cysteine protease cathepsin S (Cat S), one of the most potent mammalian elastases known. In contrast, atheromata have low levels of the endogenous Cat S inhibitor cystatin C compared with normal arteries, suggesting involvement of this protease in atherogenesis. The present study tested this hypothesis directly by crossing Cat S-deficient (CatS(-/-)) mice with LDL receptor-deficient (LDLR(-/-)) mice that develop atherosclerosis on a high-cholesterol diet. Compared with LDLR(-/-) mice, double-knockout mice (CatS(-/-)LDLR(-/-)) developed significantly less atherosclerosis, as indicated by plaque size (plaque area and intimal thickening) and stage of development. These mice also had markedly reduced content of intimal macrophages, lipids, smooth muscle cells, collagen, CD4(+) T lymphocytes, and levels of IFN-gamma. CatS(-/-)LDLR(-/-) monocytes showed impaired subendothelial basement membrane transmigration, and aortas from CatS(-/-)LDLR(-/-) mice had preserved elastic laminae. These findings establish a pivotal role for Cat S in atherogenesis.


Assuntos
Arteriosclerose/etiologia , Catepsinas/fisiologia , Receptores de LDL/fisiologia , Animais , Arteriosclerose/patologia , Movimento Celular , Colágeno/análise , Elastina/metabolismo , Leucócitos/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/química , Músculo Liso Vascular/citologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...