Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38598845

RESUMO

MicroRNAs (miRNAs) play an essential regulatory role in plant-virus interaction. However, few studies have focused on the roles of miRNAs and their targets after Sugarcane mosaic virus (SCMV) infection in sugarcane. To address this issue, we conducted small RNA and degradome sequencing on two contrasting sugarcanes (SCMV-resistant FG1 and susceptible Badila) infected by SCMV at five-time points. A total of 1578 miRNAs were profiled from 30 small RNA libraries, comprising 660 known miRNAs and 380 novel miRNAs. Differential expression analysis of miRNAs revealed that most were highly expressed during the SCMV exponential phase in Badila at 18h post-infection, with expression profiles positively correlated with virus replication dynamics, as observed through clustering. Analysis of degradome data indicated a higher number of differential miRNA targets in Badila compared to FG1 at 18 hours post-infection. Gene ontology (GO) enrichment analysis significantly enriched the stimulus-response pathway, suggesting negative regulatory roles to SCMV resistance. Specifically, miR160 exhibited upregulated expression patterns and validated in Badila through quantitative real-time PCR in the early stages of SCMV multiplication. Our research provides new insights into the dynamic response of plant miRNA and virus replication and contributes valuable information on the intricate interplay between miRNAs and SCMV infection dynamics.

2.
Mol Plant Microbe Interact ; 34(8): 973-976, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797948

RESUMO

Sugarcane pokkah boeng disease (PBD) is emerging as a prevalent foliar disease in China. This airborne disease is caused by the Fusarium species complex. To investigate the diversity and evolution of Fusarium spp., we performed whole-genome sequencing of Fusarium andiyazi YN28 using a combination of Oxford Nanopore and Illumina technology. The F. andiyazi YN28 genome was sequenced, assembled, and annotated. A high-quality genome was assembled into 24 contigs with an N50 of 2.80 Mb. The genome assembly generated a total size of 44.1 Mb with a GC content of 47.64%. In total, 15,508 genes were predicted, including 794 genes related to the carbohydrate-active enzymes, 397 noncoding RNA, 155 genes associated with transporter classification, 4,550 genes linked to pathogen-host interactions, and 269 genes involved in effector proteins. Collectively, our results will provide insight into the host-pathogen interactions and will facilitate the breeding of new varieties of sugarcane resistant to PBD.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Saccharum , Fusarium/genética , Melhoramento Vegetal , Doenças das Plantas
3.
Anim Sci J ; 90(3): 366-371, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623527

RESUMO

Porcine viral diarrhea is an acute and highly contagious enteric disease in pigs which causes huge economic losses in pig industry worldwide. Transmissible gastroenteritis virus (TGEV) is main pathogens responsible for piglets viral diarrhea. Knockout the host cellular surface receptor for TGEV may be an effective way to accelerate the breeding of resistant pigs. In this study, we applied site-specific editing pAPN which is effective in swine testis (ST) cells. Site-specific editing of pAPN reduced TGEV proliferation in ST cells by 96%-99% at different time periods post-infection. Next, the site-specific editing of pAPN porcine fetal fibroblasts were produced, and then the cell colonies were used as donor cells to generate the site-specific editing of pAPN pigs. Our research findings will not only offer a more thorough understanding of the pathogenesis of piglet diarrhea and lay the foundation for breeding TGEV-resistant piglets, but also understanding the molecular mechanisms involved in coronaviral infections.


Assuntos
Cruzamento/métodos , Antígenos CD13/genética , Diarreia/prevenção & controle , Diarreia/veterinária , Gastroenterite Suína Transmissível/prevenção & controle , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Receptores Virais/genética , Doenças dos Suínos/prevenção & controle , Suínos , Animais , Diarreia/virologia , Fibroblastos/enzimologia , Gastroenterite Suína Transmissível/virologia , Masculino , Doenças dos Suínos/virologia , Testículo/citologia , Testículo/virologia , Vírus da Gastroenterite Transmissível/patogenicidade , Vírus da Gastroenterite Transmissível/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...