Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(39): 59653-59665, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35394625

RESUMO

With continuous development of pesticide dosage forms, emulsifiable concentrates using large amounts of organic solvents are gradually obsoleted. Nanoemulsions with high water content have been developed and the preparation processes also evolved, but these processes still exist some problems, such as poor controllability and high energy consumption. Microfluidic is a controllable nanoemulsion preparation system which mainly applied to pharmaceutical synthesis. In this study, the pesticide phoxim nanoemulsion was prepared by microfluidic technology. The optimized formulation of phoxim nanoemulsion was composed of Tween 80 and pesticide emulsifier 500 as surfactant, hexyl acetate as oil, and n-propanol as co-surfactant. Moreover, when the flow rates of water and oil in the microfluidic system were adjusted to 5 µL/min and 20 µL/min, phoxim nanoemulsion was obtained with a cloud point/boiling point of 109 °C, a particle size of 21.5 ± 0.8 nm and a potential value of - 18.7 ± 0.6 mV. Furthermore, the nanoemulsion had a rapid release effect in vitro which could be fitted by the Ritger-Peppas model. The feeding toxicity of the phoxim nanoemulsion was higher than that of commercial formulation while the contact killing effect was higher than that of the active ingredient. Therefore, pesticide dosage was reduced and the insecticidal effect was enhanced by using phoxim nanoemulsions. These results also confirm the potential of microfluidics as a green process to produce pesticide nanoemulsions.


Assuntos
Praguicidas , Animais , Emulsões , Microfluídica , Compostos Organotiofosforados , Tamanho da Partícula , Spodoptera , Tensoativos , Água
2.
Food Chem ; 367: 130647, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343806

RESUMO

To increase the reuse of food residues, multifrequency countercurrent ultrasonic treatment was used to enhance the extraction yield of defatted mulberry seed protein (DMSP), and sweet-flavored peptides from DMSP hydrolysates (DMSPHs) were obtained for the first time. Here, the DMSP yield was increased by 16.2% (p < 0.05) while the power density was halved compared with single-frequency ultrasonic treatment. According to Fick's second law, a molecular diffusion dynamics model was developed to be suitable for predicting the pretreatment conditions (R2 = 0.9785). After that, the sweet-flavored peptides were purified and the main amino acid sequences were identified, i.e., FEGGSIE, KDFPEAHSQAT, and GSQPAEGAK. Moreover, the antioxidant activities of DMSPHs prepared with tri-frequency treatment was higher than 60%. The DMSPHs retarded the growth of HepG2 cells in vitro, increased the necrotic quadrant (Q1-UL), and extended the S phase. Therefore, the sweet-flavored peptides prepared from DMSPHs using the multifrequency-ultrasonic treatment have significant biological activities.


Assuntos
Morus , Antioxidantes , Peptídeos , Sementes , Tecnologia , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...