Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Histochem ; 64(s2)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909422

RESUMO

Visnagin is a furanochromone and one of the main compounds of Ammi visnaga L. that had been used to treat nephrolithiasis in Ancient Egypt. Nowadays, visnagin was widely used to treat angina pectoris, urolithiasis and hypertriglyceridemia. The potential mechanisms of visnagin involved in inflammation and cardiovascular disease were also identified. But the protective effect of visnagin on myocardial ischemia/reperfusion injury has not been confirmed. Our aim was, for the first time, to investigate the potential protective effect of visnagin on cardiac function after myocardial ischemia-reperfusion injury in a rat model, and to identify its underlying mechanism involving the inhibition of apoptosis and induction of autophagy. Thirty SD rats were randomly divided into sham group, ischemia/reperfusion group (IR), ischemia/reperfusion with visnagin (IR + visnagin) group. Myocardial ischemia/Reperfusion injury model was established. Hemodynamic measurements and echocardiography were used to analyze cardiac function, TUNEL staining and caspase activity, LC3 dots were detected with immunofluorescence staining, LC3 expression was evaluated by western blot analysis, transmission electron microscopy (TEM) was used to detect autophagosomes. Compared with the sham group and visnagin group, the cardiac dysfunction, LC3II, autophagy flow in the IR+ visnagin group increased significantly (P<0.01), but the activity of caspase-3 and caspase-9 and the apoptotic in the IR + visnagin group decreased significantly (P<0.01). In conclusion, visnagin may play a protective role in ischemia/reperfusion injury by inducing autophagy and reducing apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Quelina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Fibrose/prevenção & controle , Masculino , Ratos Sprague-Dawley
2.
Exp Ther Med ; 15(4): 3495-3500, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29545874

RESUMO

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11, a member of the transforming growth factor-ß superfamily, has been reported to be involved in colorectal cancer. However, the roles of GDF11 in Chinese patients with liver cancer and the underlying mechanisms have remained elusive. The present study assessed the expression of GDF11 in 10 paired samples of cancerous and normal tissues from Chinese liver cancer patients. The results indicated that the expression of GDF11 was significantly lower in cancerous tissues than in normal tissues. In vitro, the expression of GDF11 was reduced in a panel of liver cancer cell lines compared with that in a normal liver cell line at the mRNA and protein level. Treatment with GDF11 reduced the viability of HepG2 for up to 72 h and GDF11 treatment reduced the viability of SMMC-7721 after 48 and 72 h. Furthermore, GDF11 activated Smad2/3 signaling in HepG2 cells. In conclusion, GDF11 has a tumor suppressor role in liver cancer, exerts its effects through Smad2/3 signaling and may serve as a novel tumor marker in liver cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA