Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(13): 5260-5268, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759364

RESUMO

An ultrafast time-resolved pump-probe setup with both high temporal and spatial resolution is developed to investigate the transient interaction between a nanosecond extreme ultraviolet (EUV) pulse and matter. By using a delayed femtosecond probe pulse, the pattern evolution of surface modification induced by an EUV pump at a wavelength of 13.5 nm can be imaged at different delay times, which provides deep insight into the EUV-induced damage dynamics and damage mechanisms. As a demonstration, single-shot EUV damage on a B4C(6.0 nm)/Ru(30.4 nm)/D263 nano-bilayer optical film is studied using this pump-probe method. A recoverable phenomenon is found during the evolution process of the dome-shaped damage region. This is explained by the elastic and plastic deformations resulting from the huge compressive stress difference at the Ru-substrate interface with the help of simulations on the thermal effects and mechanical responses. This damage mechanism is further proven by the complementary experiments at a higher EUV fluence at 13.5 nm.

2.
J Colloid Interface Sci ; 616: 326-337, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219198

RESUMO

Conductive metal-organic frameworks can provide unique porous structures, large pore volumes, many catalytically active sites and high crystallinity, and so are becoming increasingly important and attractive as electrocatalytic materials. The present work synthesized nanorods of the conductive compound Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) with a high degree of crystallinity from HITP ligands and Ni2+ ions. Screen-printed electrodes made with this material were employed to fabricate an enzyme-free sensor for the detection of ascorbic acid (AA). The sensor exhibited good catalytic activity during the electrocatalytic analysis of AA in alkaline media, attributed to the synergistic effect of highly active Ni-N4 catalytic sites in the nanorods, the two-dimensional superimposed honeycomb lattice of the Ni3(HITP)2, and the large specific surface area of this material. The latter property facilitated efficient electron transfer during catalytic oxidation. A portable electrochemical AA detection system was developed using Ni3(HITP)2 as the electrode material together with application-specific integrated circuits and a smartphone application with App. Good sensing performance was obtained, including a wide linear range (2-200 µM) with high sensitivity (0.814 µA µM-1 cm-2), and low detection limit (1 µM). This system can be used to monitor AA levels and trends in sweat to assess vitamin C intake as a part of personal health management.


Assuntos
Estruturas Metalorgânicas , Ácido Ascórbico , Eletrodos , Estruturas Metalorgânicas/química , Níquel/química , Suor
3.
J Phys Condens Matter ; 33(3)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32987373

RESUMO

The spatial orientation of chromophores defines the photophysical and optoelectronic properties of a material and serves as the main tunable parameter for tailoring functionality. Controlled assembly for achieving a predefined spatial orientation of chromophores is rather challenging. Metal-organic frameworks (MOFs) are an attractive platform for exploring the virtually unlimited chemical space of organic components and their self-assembly for device optimization. Here, we demonstrate the impact of interchromophore interactions on the photophysical properties of a surface-anchored MOF (SURMOF) based on 3,9-perylenedicarboxylicacid linkers. We predict the structural assembly of the perylene molecules in the MOF via robust periodic density functional theory calculations and discuss the impact of unit topology and π-π interaction patterns on spectroscopic and semiconducting properties of the MOF films. We explain the dual nature of excited states in the perylene MOF, where strong temperature-modulated excimer emission, enhanced by the formation of perylene J-aggregates, and low stable monomer emission are observed. We use band-like and hopping transport mechanisms to predict semiconducting properties of perylene SURMOF-2 films as a function of inter-linker interactions, demonstrating both p-type and n-type conduction mechanisms. Hole carrier mobility up to 7.34 cm2Vs-1is predicted for the perylene SURMOF-2. The results show a promising pathway towards controlling excimer photophysics in a MOF while controlling charge carrier mobility on the basis of a predictive model.

4.
Rev Sci Instrum ; 89(10): 103109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399967

RESUMO

For investigating extreme ultraviolet (EUV) damage on optics, a table-top EUV focusing optical system was developed in the laboratory. Based on a modified Schwarzschild objective with a large numerical aperture and a laser-plasma light source, this optical system can generate a focusing spot with the maximum energy density of 2.27 J/cm2 at the focal plane of the objective at the wavelength of 13.5 nm. The structures and the characterized properties of this optical system are presented in this paper. For testing the performance of this setup, single-shot EUV damage tests were carried out on an optical substrate of CaF2 and a gold thin film. The damage thresholds and morphologies of these samples were given and discussed with former research studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...