Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 279-288, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38936084

RESUMO

Rational design of coordination environment of Fe-based metal-organic frameworks (Fe-MOFs) is still a challenge in achieving enhanced catalytic activity for Fenten-like advanced oxidation process. Here in, novel porous Fe-MOFs with modulated O-Fe-N coordination was developed by configurating amino terephthalic acid (H2ATA) and pyrazine-dicarboxylic acid (PzDC) (Fe-ATA/PzDC-7:3). PzDC ligands introduce pyridine-N sites to form O-Fe-N coordination with lower binding energy, which affect the local electronic environment of Fe-clusters in Fe-ATA, thus decreased its interfacial H2O2 activation barrier. O-Fe-N coordination also accelerate Fe(II)/Fe(III) cycling of Fe-clusters by triggering the reactive oxidant species mediated Fe(III) reduction. As such, Fe-ATA/PzDC-7:3/H2O2 system exhibited excellent degradation performance for typical antibiotic sulfamethoxazole (SMX), in which the steady-state concentration of hydroxyl radical (OH) was 1.6 times higher than that of unregulated Fe-ATA. Overall, this study highlights the role of O-Fe-N coordination and the electronic environment of Fe-clusters on regulating Fenton-like catalytic performance, and provides a platform for precise engineering of Fe-MOFs.

2.
Sci Total Environ ; 912: 168920, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029977

RESUMO

Pre-oxidation and powdered activate carbon (PAC) are usually used to remove algae and odorants in drinking waterworks. However, the influence of interaction between oxidants and PAC on the treatment performance are scarcely known. This study systematically investigated the combination schemes of four oxidants (KMnO4, NaClO, ClO2, and O3) and PAC on the inactivation of Microcystis aeruginosa cells and removal of four frequently detected odorants in raw water (diethyl disulfide (DEDS), 2,2'-oxybis(1chloropropane) (DCIP), 2-methylisoborneol (2-MIB) and geosmin (GSM)). O3 showed highest pseudo-first-order removal rate for all four compounds and NaClO exhibited highest inactivation rates for the cell viability and Chlorophyll a (Chl-a). The Freundlich model fitted well for the adsorption of DEDS and DCIP by PAC. When treated by combined oxidation/PAC, the removal ratio of algae cells and odorants were lower (at least 1.6 times) than the sum of removal ratios obtained in oxidation or PAC adsorption alone. Among these four oxidants, the highest synchronous control efficiency of odorants (52 %) and algae (66 %) was achieved by NaClO/PAC. Prolonging the dosage time interval promoted the removal rates. The pre-PAC/post-oxidation processes possessed comparable efficiency for the removal of odorants and algae cells comparing with pre-oxidation/post-PAC process, but significantly inhibited formation of disinfection byproducts (DBPs), especially for the formation of C-DBPs (for NaClO and ClO2), bromate (for O3) and chlorate/chlorite (for ClO2). This study could provide a better understanding of improving in-situ operation of the combined pre-treatments of oxidation and PAC for source water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Desinfecção , Carvão Vegetal , Odorantes , Adsorção , Pós , Clorofila A , Água
3.
IEEE J Biomed Health Inform ; 28(3): 1448-1459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133975

RESUMO

Intelligent medicine is eager to automatically generate radiology reports to ease the tedious work of radiologists. Previous researches mainly focused on the text generation with encoder-decoder structure, while CNN networks for visual features ignored the long-range dependencies correlated with textual information. Besides, few studies exploit cross-modal mappings to promote radiology report generation. To alleviate the above problems, we propose a novel end-to-end radiology report generation model dubbed Self-Supervised dual-Stream Network (S3-Net). Specifically, a Dual-Stream Visual Feature Extractor (DSVFE) composed of ResNet and SwinTransformer is proposed to capture more abundant and effective visual features, where the former focuses on local response and the latter explores long-range dependencies. Then, we introduced the Fusion Alignment Module (FAM) to fuse the dual-stream visual features and facilitate alignment between visual features and text features. Furthermore, the Self-Supervised Learning with Mask(SSLM) is introduced to further enhance the visual feature representation ability. Experimental results on two mainstream radiology reporting datasets (IU X-ray and MIMIC-CXR) show that our proposed approach outperforms previous models in terms of language generation metrics.


Assuntos
Radiologia , Autogestão , Humanos , Radiografia , Radiologistas , Benchmarking , Processamento de Imagem Assistida por Computador
4.
Front Aging Neurosci ; 15: 1184435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404690

RESUMO

Neurodegenerative diseases (NDs) have a slow onset and are usually detected late during disease. NDs are often difficult to cure due to the presence of the blood-brain barrier (BBB), which makes it difficult to find effective treatments and drugs, causing great stress and financial burden to families and society. Currently, small extracellular vesicles (sEVs) are the most promising drug delivery systems (DDSs) for targeted delivery of molecules to specific sites in the brain as a therapeutic vehicle due to their low toxicity, low immunogenicity, high stability, high delivery efficiency, high biocompatibility and trans-BBB functionality. Here, we review the therapeutic application of sEVs in several NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, discuss the current barriers associated with sEVs and brain-targeted DDS, and suggest future research directions.

5.
ACS Nanosci Au ; 3(1): 94-102, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101464

RESUMO

The applications of nanomotors in the biomedical field have been attracting extensive attention. However, it remains a challenge to fabricate nanomotors in a facile way and effectively load drugs for active targeted therapy. In this work, we combine the microwave heating method and chemical vapor deposition (CVD) to fabricate magnetic helical nanomotors efficiently. The microwave heating method can accelerate intermolecular movement, which converts kinetic energy into heat energy and shortens the preparation time of the catalyst used for carbon nanocoil (CNC) synthesis by 15 times. Fe3O4 nanoparticles are in situ nucleated on the CNC surface by the microwave heating method to fabricate magnetically driven CNC/Fe3O4 nanomotors. In addition, we achieved precise control of the magnetically driven CNC/Fe3O4 nanomotors through remote manipulation of magnetic fields. Anticancer drug doxorubicin (DOX) is then efficiently loaded onto the nanomotors via π-π stacking interactions. Finally, the drug-loaded CNC/Fe3O4@DOX nanomotor can accurately accomplish cell targeting under external magnetic field control. Under short-time irradiation of near-infrared light, DOX can be quickly released onto target cells to effectively kill the cells. More importantly, CNC/Fe3O4@DOX nanomotors allow for single-cell or cell-cluster-targeted anticancer drug delivery, providing a dexterous platform to potentially perform many medically relevant tasks in vivo. The efficient preparation method and application in drug delivery are beneficial for future industrial production and provide inspiration for advanced micro/nanorobotic systems using the CNC as a carrier for a wide range of biomedical applications.

6.
Sci Total Environ ; 880: 163297, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028653

RESUMO

Mixed chlorine/chloramines are common in drinking water distribution systems (DWDSs); however, their transformation and impact on chemical and microbial characteristics are not well understood. We systematically investigated water quality parameters associated with mixed chlorine/chloramine species conversion in 192 samples (including raw, finished, and tap water) collected throughout the year in a city in East China. Various chlorine/chloramine species (free chlorine, monochloramine [NH2Cl], dichloramine [NHCl2], and organic chloramines [OC]) were detected in both chlorinated and chloraminated DWDSs. NHCl2 + OC increased with transport distance along the pipeline network. The maximum proportion of NHCl2 + OC in over total chlorine in tap water reached 66 % and 38 % from chlorinated and chloraminated DWDSs, respectively. Both free chlorine and NH2Cl showed a rapid decay in the water pipe systems, but NHCl2 and OC were more persistent. Correlations between chlorine/chloramine species and physicochemical parameters were established. Models for predicting the sum of chloroform/TCM, bromodichloromethane/BDCM, chlorodibromomethane/CBDM, and bromoform/TBM (THM4) (R2 = 0.56) and haloacetic acids (HAAs) (R2 = 0.65) exhibited greater accuracy based on machine learning tuned with chlorine/chloramine species, particularly NHCl2 + OC. The predominant bacterial communities in mixed chlorine/chloramine systems were those resistant to chlorine or chloramine such as proteobacteria. NH2Cl was the most significant explanatory factor (28.1 %) for the variation in microbial community assemblage in chloraminated DWDSs. Although residual free chlorine and NHCl2 + OC, accounted for a smaller proportion of chlorine species in chloraminated DWDSs, they played an essential role (12.4 % and 9.1 %, respectively) in the microbial community structure.


Assuntos
Água Potável , Purificação da Água , Cloraminas , Cloro , Qualidade da Água , Desinfecção
7.
Front Mol Neurosci ; 16: 1090556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818649

RESUMO

Small extracellular vesicles (sEVs) are generated by all types of cells during physiological or pathological conditions. There is growing interest in tissue-derived small extracellular vesicles (tdsEVs) because they can be isolated from a single tissue source. Knowing the representation profile of microRNA (miRNA) in midbrain tissue-derived sEVs (bdsEVs) and their roles is imperative for understanding the pathological mechanism and improving the diagnosis and treatment of Parkinson's disease (PD). bdsEVs from a rat model of PD and a sham group were separated and purified using ultracentrifugation, size-exclusion chromatography (SEC), and ultrafiltration. Then, miRNA profiling of bdsEVs in both groups was performed using next-generation sequencing (NGS). The expression levels of 180 miRNAs exhibited significant differences between the two groups, including 114 upregulated and 66 downregulated genes in bdsEVs of PD rats compared with the sham group (p < 0.05). Targets of the differentially expressed miRNAs were predicted by miRanda and RNAhybrid, and their involvement in the signaling pathways and cellular function has been analyzed through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO). Furthermore, we explored the expression levels of miR-103-3p, miR-107-3p, miR-219a-2-3p, and miR-379-5p in bdsEVs, sEVs derived from plasma, and plasma of both groups of rats. Interestingly, the expression levels of miR-103-3p, miR-107-3p, miR-219a-2-3p, and miR-379-5p were elevated in bdsEVs and sEVs from plasma; in contrast, their expression levels were decreased in plasma of the rat model of PD. In summary, miRNAs may play a significant role in the onset and development of PD, and miRNAs need to be selected carefully as a research subject for exploring the pathological mechanism and the potential therapeutic targets and diagnostic markers of PD.

8.
Water Res ; 231: 119618, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706470

RESUMO

O-methylated pollutants (OMPs) are emerging contaminants in drinking water and mainly produced through bacterial O-methylation. However, the information of OMP-producing bacteria (OMPPB) in drinking water treatment plant (DWTP) is largely unknown so far. In this study, the OMPPB in water samples from three DWTPs (XL, JX and NX) were investigated by using cultivation-dependent and cultivation-independent technologies. Four OMPs were detected and their odor and toxicity risks were assessed. Formation potentials (FPs) of 2,4,6-trichloanisole, 2,3,6-trichloanisole, 2,4,6-tribromoanisole, pentachloroanisole and diclofenac methyl ester were determined in water samples and their values shifted significantly among DWTPs. A most probable number (MPN) method was established to quantify OMPPB numbers and the relationships between total haloanisole FPs (HAFPs) (y) and OMPPB numbers (x) in three DWTPs could be described by the following functions: y = 0.496×0.373 (XL), y = 0.041×0.465 (JX) and y = 0.218×0.237 (NX). Several genera like Bacillus, Ralstonia, Brevundimonas, etc. were newly found OMPPB among the cultivable bacteria, and their OMP products were evaluated in terms of quantity and environment risks (odor, toxicity and bioaccumulation). High-throughput sequencing revealed treatment process was the main driving factor to shape the OMPPB community structures and Mantel test showed HAFP profile was significantly influenced by Mycobacterium and Pelomonas. PICURSt2 analysis discovered four phenolic O-methyltransferases (OMTs) and four carboxylic OMTs which might be responsible for OMP formation. Several strategies were recommended to assess risk and control contamination brought by OMPPB in DWTPs.


Assuntos
Água Potável , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Poluentes Ambientais/análise , Purificação da Água/métodos , Bactérias , Ésteres/análise , Poluentes Químicos da Água/química
9.
Chemosphere ; 313: 137529, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529176

RESUMO

Combining pre-oxidation with activated carbon adsorption was explored as an ideal approach for removing iodine from water source to eliminate the formation of Iodinated trihalomethanes (I-THMs). Compared with permanganate and monochloramine, chlorine is more suitable as pre-oxidant to obtain higher active iodine species (HOI/I2). Active iodine species adsorption using both powdered activated carbon (PAC) and granular activated carbon (GAC) can be well fitted the pseudo-second-order kinetic model indicating that chemical adsorption was the dominant mechanism for HOI/I2 adsorption. The average pore size of activated carbons was the most strongly correlated with the adsorption capacity (R2 > 0.98), followed by methylene blue (R2 > 0.76), pore volume (R2 > 0.70) and iodine number (R2 > 0.67). Moreover, three models, including intraparticle diffusion, Byod kinetic, and diffusion-chemisorption were used to illustrate the mechanisms of HOI/I2 adsorption. Chemical adsorption was the dominant mechanism for HOI/I2 adsorption. In summary, at the molar ratio of [NaClO] and [I-] as 1.2, pre-chloriantion time of 5 min, subsequently dosage of 15 mg/L of PAC E with 20 min adsorption can remove 79.8% iodine. In addition, the combined process can eliminate 61%-87.2% of I-THMs in the subsequent chlor(am)ination. The results indicate that pre-chlorination combined with PAC can effectively removed HOI/I2 and attenuate I-THMs formation in the subsequent disinfection process.


Assuntos
Água Potável , Iodo , Purificação da Água , Carvão Vegetal , Trialometanos , Halogenação , Adsorção , Purificação da Água/métodos
10.
Water Res ; 226: 119200, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257154

RESUMO

To improve the performance of the conventional coagulation process, a permanganate (Mn(VII)) pre-oxidation combined with Fe(III)/peroxymonosulfate (PMS) coagulation process (Mn(VII)-Fe(III)/PMS) that can significantly improve the removal of dissolved organic carbon (DOC), turbidity, and micropollutants is proposed in this study. Compared with conventional Fe(III) coagulation, the Mn(VII)-Fe(III)/PMS process can also significantly enhance the removal of iohexol and sulfamethoxazole in raw water. During this process, the primary reduction product, Mn(IV), after Mn(VII) pre-oxidation was adsorbed on the floc surfaces and involved in the Fe(III)/PMS process. The natural organic matter (NOM) in raw water mediated the redox cycle of iron. The synergistic effect of NOM, Fe, and Mn facilitated the redox cycle of Mn(III)/Mn(IV) and Fe(III)/Fe(II) to promote the activation of PMS. The sulfate radical (SO4•-) played an important role in the degradation of micropollutants. The formation potential of the detected volatile disinfection by-product (DBP) during the subsequent chlorination was reduced by 21.9% after the Mn(VII)-Fe(III)/PMS process. This study demonstrated the promising application of the Mn(VII)-Fe(III)/PMS process for coagulation and micropollutant control and illustrated the reaction mechanism. This study provides guidance for improving conventional drinking water treatment processes.


Assuntos
Compostos Férricos , Purificação da Água , Peróxidos , Oxirredução
11.
Appl Microbiol Biotechnol ; 106(13-16): 5273-5286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794486

RESUMO

Water quality deterioration of drinking water distribution systems (DWDSs) caused by water source switching has been reported previously. However, systematic investigation of the biostability of DWDS under water source switching is limited. Aged pipes, including three commonly used pipe materials dug out from a practical DWDS, were used to systematically investigate the biofilm stability mechanism of DWDS under water source switching to quality-improved water. An increase in adenosine triphosphate (ATP) concentration in the bulk water during the initial stage of the switching period was observed, indicating the risk of biofilm release through aged pipe surfaces after water source switching. Sloughing of biofilms might contribute to temporary instability. From day 35, the ATP concentration in the polyethylene (PE) and plastic stainless steel composite (PS) pipes were maintained at approximately 2.40 and 2.56 ng/L, respectively. In contrast, the ATP concentration in the ductile iron (DI) pipes was higher, at approximately 3.43 ng/L from day 42. The water quality variation could cause areas of the biofilm to slough and reduce the biomass of biofilm, causing partial alteration of the microbial community. 16S rRNA gene amplicon sequencing-based functional prediction revealed that the biofilm could increase the abundance of chlorine-resistant bacteria attributed to the increase in Pseudomonas and Methylobacterium after switching to quality-improved water. Moreover, the profiles of specific pathways linked to human diseases, antibiotic resistance, and antibiotic biosynthesis revealed that the safety of the biofilm could improve after switching to quality-improved water. KEY POINTS: • The PE and PS biofilm showed improved resistance to water quality perturbation. • Greater number of Methylobacterium was found in the biofilm after water source switching. • 3.16S gene-based metagenomics prediction revealed that the safety of the biofilm under water source switching.


Assuntos
Água Potável , Trifosfato de Adenosina , Idoso , Biofilmes , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
12.
Water Res ; 220: 118595, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613482

RESUMO

The traditional methods of increasing the chlorine disinfectant dosage in the drinking water distribution system (DWDS) to control microorganisms and improve the safety of drinking water quality are subjected to several challenges. One noticeable problem is the unpleasant odor generated by chlorine and chloramines. However, the generally proposed chlorine dosage optimization model ignores the chloric odor distribution in the DWDS. This study proposes a comprehensive multi-parameter water quality model and aims to balance the trade-offs between: (i) minimize the flavor profile analysis (FPA) degree of the chloric odor produced by chlorine and chloramines in the DWDS, and (ii) minimize the economic investment (chlorine dosage and operation cost). EPANET and back propagation (BP) network integrated with the Borg algorithm were employed as innovative approaches to simulate the chlorine, chloramines, and chloric odor intensity in the DWDS. Moreover, the application of the multi-parameter model was demonstrated in a real-world DWDS case study. 0.5 mg-Cl2/L (mg/L) chlorine at 8 secondary chlorination points was added to the DWDS as an optimized chlorine dosing scheme considering the olfactory and financial objective functions simultaneously. When switching to a superior water source, the FPA of the chloric odor in DWDS increased by a maximum of 1.4 at most if the initial chlorine dosage remained as before. To avoid the occurrence of chloric odor and also control the residual free chlorine (residual chlorine) at a suitable value, the initial and secondary chlorine dosages were optimized to 0.4 mg/L and 0.3 mg/L, respectively. Under this condition, the initial chlorine dosage was reduced by 50% compared to the original operation scheme in City J, China, the qualification rate of the residual chlorine reached 97.2%, basically consistent with that before water source switching, and the chloric odor intensity of the DWDS was controlled below FPA 3.4.


Assuntos
Água Potável , Purificação da Água , Algoritmos , Cloraminas , Cloro , Desinfecção/métodos , Halogenação , Aprendizado de Máquina , Odorantes , Purificação da Água/métodos
13.
Environ Pollut ; 271: 116293, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412444

RESUMO

Delivering quality-changed water often contributes to the biological instability of drinking water distribution systems (DWDS). However, the potential effects of quality-changed water on the biostability within DWDS are not well understood, especially after water switching to quality-improved water. The objective of this study was to investigate the effects of quality-improved water on DWDS, focusing on the stability of biofilm. The practical aged-pipe was assembled into pipe reactors to simulate the effect of switching to quality-improve water. The adenosine triphosphate (ATP) concentration of bulk water in the pipe reactors increased from ∼1.2 ng/L to almost above 5 ng/L when fed water switching to TP 2. Biomass quantified by measuring ATP concentration confirmed that the risk of biofilm release through aged cast-iron (CI) pipe surfaces after water source switching. The changes in water characteristics due to quality-improved water source could cause bacteria release in DWDS at the initial period (at the first 7 days). However, the DWDS can establish the new stable phase after 42 days. Over time, biomass in the bulk water of the distribution system decreased significantly (The ATP concentration in the bulk maintains around 3 ng/L) after 42 days, indicating the improvement of water quality. The biofilm was dominated by bacteria related to iron-cycling process, and at the genus level, Desulfovibrio had the highest relative abundance, however, it decreased significantly (from 48% to 9.3%) after water source switching. And there was a slightly increase in the fraction of iron-oxidizing bacteria (IOB) and siderophore-producing bacteria (SPB), but a relatively higher increase in nitrate-reducing bacteria (NRB), nitrobacteria (NOB), and iron-reducing bacteria (IRB) was observed. Taken together, these results and the corrosion morphology, indicate that pipe biofilm and corrosion were chemically and microbially stable after re-stability under water source switching. In addition, the bulk water environment showed a marked decrease in selected bacteria at genus level, including pathogenic species, indicating the improvement of quality in drinking water.


Assuntos
Água Potável , Microbiota , Trifosfato de Adenosina , Biofilmes , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
14.
J Hazard Mater ; 403: 123693, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264884

RESUMO

Microorganisms in drinking water distribution systems (DWDSs) can O-methylate toxic halophenols (HPs) into earthy-musty haloanisoles (HAs). However, the dominant HA-producing bacterial species and their O-methylation properties are still unknown. In this study, eight bacterial strains from DWDS were isolated and the community abundances of the related genera in bulk water and biofilms as well as their O-methylation properties were investigated. Among the genera discovered in this study, Sphingomonas and Pseudomonas are dominant and play important roles in DWDSs. All bacteria could simultaneously convert five HPs to the corresponding HAs. Two Sphingomonas ursincola strains mainly produced 2,3,6-trichloroanisole (2,3,6-TCA) (2.48 × 10-9-1.18 × 10-8 ng/CFU), 2,4,6-trichloroanisole (2,4,6-TCA) (8.12 × 10-10-3.11 × 10-9 ng/CFU) and 2,4,6-tribromoanisole (2,4,6-TBA) (2.95 × 10-9-3.21 × 10-9 ng/CFU), while two Pseudomonas moraviensis strains preferred to generate 2-monochloroanisole (2-MCA) (1.19 × 10-9-3.70 × 10-9 ng/CFU) and 2,4-dichloroanisole (2,4-DCA) (3.81 × 10-9-1.20 × 10-8 ng/CFU). Among the chloramphenicol-susceptible strains, four strains contained inducible O-methyltransferases (OMTs), while the O-methylations of the others were expressed constitutively. All bacteria could use S-adenosyl methionine as methyl donor. Potential taste and odor (T & O) risks of five HAs in DWDS followed an order of 2,4,6-TBA > 2,4,6-TCA > 2,3,6-TCA > 2,4-DCA > 2-MCA. The recommended 2,4,6-TCP criteria for T & O control is 0.003-0.07 mg/L.


Assuntos
Água Potável , Bactérias/genética , Biotransformação , Pseudomonas , Sphingomonas
15.
Appl Microbiol Biotechnol ; 104(21): 9079-9093, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965560

RESUMO

The existence of taste and odour (T&O) in drinking water is one of the principal causes of consumer complaints and is commonly related to algae growth. Numerous studies have confirmed the existence of algal blooms emerging specifically in low-temperature periods, herein referred to as "cold algae"; these include chrysophytes, cryptophytes, dinoflagellates and diatoms. In addition, the adaption mechanisms of these "cold algae" involve high flexibility in their nutrient intake and to the hydrological characteristics of the waters and their high contents of intracellular polyunsaturated fatty acids (PUFAs). Like algae proliferating in higher temperature waters, cold algae can also produce offensive odours. The potential dominant T&O compounds of low-temperature algae probably include saturated/unsaturated aldehydes and even some terpenoids. Among these, the polyunsaturated aldehydes (PUAs), the derivatives of polyunsaturated fatty acids, are the dominant T&O compounds and are probably synthesized during cell rupture. It was found that, for cold algae, low temperature may have a favourable effect on the generation of algae-induced T&O compounds. Furthermore, to better understand the internal mechanisms of algal T&O production, the stress response theory is introduced, which provides ideas for T&O control in raw water and in water treatment. Finally, implications for T&O management are given based on this review. KEY POINTS: • Like algae proliferating in higher temperature waters, cold algae can produce offensive odours. • Low temperatures may have a favourable effect on the generation of algae-induced T&O compounds. • The stress response theory can help to better understand the internal mechanisms of algal T&O production.


Assuntos
Odorantes , Paladar , Resposta ao Choque Frio , Eutrofização , Temperatura
16.
Chemosphere ; 252: 126509, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32224357

RESUMO

Microcystis aeruginosa and Pseudanabaena are two common cyanobacterial species/genus and they can occur coincidently in many eutrophic lakes globally. These two cyanobacteria could produce Taste & Odor (T&O) compounds, and their production of T&O compounds might be changed when they are present coincidently. The amounts of T&O compounds and their producers may influence the effectiveness of water treatment processes. Therefore, the mutual interactions between Microcystis aeruginosa (FACHB-905, M) and Pseudanabaena sp. (FACHB-1277, P) on T&O compounds in co-cultures were evaluated in this study. Different initial cell concentrations of M and P, with ratios of M:P = 1:1, M:P = 1:2 and M:P = 2:1 were applied in the co-cultures. The growth of M was enhanced under all of the cyanobacterial cell ratios. The growth of P was enhanced under the ratio of M:P = 1:1, while it was inhibited under the ratios of M:P = 1:2 and M: P = 2:1. In addition, the growth of the two cyanobacteria and their production of ß-cyclocitral and 2-methylisoborneol (2-MIB) in the filtrate of P were higher than those in the filtrate of M, which may be attributed to their associated secondary metabolites. The cell integrity and photosynthetic capacity of the two studied cyanobacteria are greatly affected by exposure to ß-cyclocitral and 2-MIB. The results showed that ß-cyclocitral and 2-MIB had the allelopathic effects on the two cyanobacteria species which might influence the composition of co-existing cyanobacteria and their production of T&O compounds.


Assuntos
Cianobactérias/fisiologia , Odorantes , Paladar , Aldeídos , Canfanos , Diterpenos , Ecologia , Lagos , Microcystis/fisiologia , Fotossíntese
17.
Sci Total Environ ; 679: 1-11, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31078770

RESUMO

Taste and odor (T & O) issues in drinking water have become serious problems which cannot be ignored by customers. Several studies have confirmed that microbes in water can biotransform halophenols (HPs) to haloanisoles (HAs) with earthy and musty flavors via microbial O-methylation. In this paper, the formation of 2-chloroanisole (2-CA), 2,4-dichloroanisole (2,4-DCA), 2,4,6-trichloroanisole (2,4,6-TCA), 2,3,6-trichloroanisole (2,3,6-TCA) and 2,4,6-tribromoanisole (2,4,6-TBA), and the microbial variation during the microbial O-methylation were investigated in annular reactors (ARs) with three coupon materials. For precursors, 42.5% of 2-CP and 68.9% of 2,4-DCP decayed during the reaction. Among the five HAs, the formation rate constant followed an order of 2,4,6-TCA > 2-CA > 2,4,6-TBA > 2,4-DCA ~ 2,3,6-TCA, while [HA]max followed a totally opposite one. The simulated flow velocity had no significant effect (p > 0.05) on HA formation. Ductile iron (DI) AR could produce more HAs than stainless steel (SS) and polyvinyl chloride (PVC) ARs. The final HA molar concentration followed an order of 2,3,6-TCA > 2,4-DCA > 2,4,6-TBA ~ 2,4,6-TCA > 2-CA, which might be explained by multiple factors including HP's dissociation degree, halogen atom's steric hindrance and specificity of HP O-methyltransferases. During the reaction, the microbial biomass dramatically increased 6.8-9.0 times in bulk water but dropped significantly on coupon biofilms. The effect of HPs significantly changed the bacterial communities on coupon in terms of composition and diversity, and declined the relative abundance of HA-producing bacteria, while fungi and their HA-producing genus showed better resistance ability towards HPs. By using Pearson correlation analysis, a significant correlation (p = 0.0003) was found between [HA]max and initial coupon biofilm biomass. Finally, a linear relationship was established between initial total biomass and HA formation potential.


Assuntos
Anisóis/metabolismo , Biofilmes , Biomassa , Água Potável/microbiologia , Consórcios Microbianos/fisiologia , Abastecimento de Água/métodos , Reatores Biológicos , Água Potável/química , Metilação , Resistência ao Cisalhamento
18.
Appl Microbiol Biotechnol ; 103(11): 4269-4277, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972459

RESUMO

The rapid and credible evaluations of the microbial stability of a drinking water distribution system (DWDS) are of great significance for ensuring the safety of drinking water and predicting microbial pollution. Conventional biostability assessment methods mainly focus on bacterial regrowth or evaluation of the level of nutrients that support bacterial regrowth. However, such methods are time-consuming and have many limitations. An adenosine triphosphate (ATP) assay can rapidly measure all active microorganisms and is known to be a useful method to assess the microbial activity of drinking water. The measurement of ATP has been used for more than a decade in the field of drinking water research. This article reviews the application of an ATP luminescence-based method to assess the biostability of drinking water and discusses the feasibility of ATP measurement as a parameter for quickly evaluating this criterion. ATP measurement will help researchers and water managers better monitor the biological stability of drinking water from the source to the consumer's tap. This review covers the: (1) principle and application of the ATP measurement in drinking water quality assessment; (2) comparison of the merits and demerits of several methods for evaluating the biostability of drinking water; (3) discussions on using ATP measurement in evaluating biostability; and (4) improvements in the use of ATP measurement in evaluating biostability. At the end of this review, recommendations were given for better application of the ATP measurement as a parameter for monitoring the microbial quality of drinking water.


Assuntos
Trifosfato de Adenosina/análise , Bactérias/metabolismo , Água Potável/microbiologia , Medições Luminescentes/métodos , Poluição da Água , Bactérias/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...