Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38687954

RESUMO

This work explores the use of 2-nitrophloroglucinol (2-NPG) as a matrix for quantitative analysis of the fungicide Pyrimethanil (PYM) in strawberries using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and imaging. 2-NPG was selected for PYM analysis for optimum sensitivity and precision compared to common matrices α-cyano-4-hydroxylcinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). PYM-sprayed strawberries were frozen 0, 1, 3, and 4 days after treatment and sectioned for MALDI imaging. The remaining part of each strawberry was processed using quick easy cheap effective rugged and safe (QuEChERS) extraction and analyzed by MALDI-MS and ultraperformance liquid chromatography multireaction-monitoring (UPLC-MRM). MALDI-MS showed comparable performance to UPLC-MRM in calibration, LOD/LOQ, matrix effect, and recovery, with the benefit of fast analysis. The MALDI imaging results demonstrated that PYM progressively penetrated the interior of the strawberry over time and the PYM concentration on tissue measured by MALDI imaging correlated linearly with MALDI-MS and UPLC-MRM measurements and accounts for 79% MALDI-MS and 85% UPLC-MRM values on average. Additionally, quartz crystal microbalance (QCM) was introduced as a new approach to determine strawberry tissue mass per area for MALDI imaging absolute quantitation with sensitive, direct, and localized measurements. This work demonstrates the first example of absolute quantitative MALDI imaging of pesticides in a heterogeneous plant tissue. The novel use of the 2-NPG matrix in quantitative MALDI-MS and imaging could be applied to other analytes, and the new QCM tissue mass per area method is potentially useful for quantitative MALDI imaging of heterogeneous tissues in general.

2.
Chem Biomed Imaging ; 1(2): 110-120, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37235187

RESUMO

Improving the charge storage capacity and lifetime and charging/discharging efficiency of battery systems is essential for large-scale applications such as long-term grid storage and long-range automobiles. While there have been substantial improvements over the past decades, further fundamental research would help provide insights into improving the cost effectiveness of such systems. For example, it is critical to understand the redox activities of cathode and anode electrode materials and stability and the formation mechanism and roles of the solid-electrolyte interface (SEI) that forms at the electrode surface upon an external potential bias. The SEI plays a critical role in preventing electrolyte decay while still allowing charges to flow through the system while serving as a charge transfer barrier. While surface analytical techniques such as X-ray photoelectron (XPS), X-ray diffraction (XRD), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM) provide invaluable information on anode chemical composition, crystalline structure, and morphology, they are often performed ex situ, which can induce changes to the SEI layer after it is removed from the electrolyte. While there have been efforts to combine these techniques using pseudo-in situ approaches via vacuum-compatible devices and inert atmosphere chambers connected to glove boxes, there is still a need for true in situ techniques to obtain results with improved accuracy and precision. Scanning electrochemical microscopy (SECM) is an in situ scanning probe technique that can be combined with optical spectroscopy techniques such as Raman and photoluminescence spectroscopy methods to gain insights into the electronic changes of a material as a function of applied bias. This Review will highlight the potential of SECM and recent reports on combining spectroscopic measurements with SECM to gain insights into the SEI layer formation and redox activities of other battery electrode materials. These insights provide invaluable information for improving the performance of charge storage devices.

3.
Anal Chem ; 93(48): 15886-15896, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816719

RESUMO

Scanning electrochemical microscopy (SECM) has been extensively applied to the electrochemical analysis of the surfaces and interfaces of a photoelectrochemical (PEC) system. A semiconductor photoelectrode with a well-defined geometry and active surface area comparable to SECM's tip is highly desired for accurately quantifying interfacial charge-transfer activities and photoelectrochemically generated redox species, where the broadening effects due to the mass transfer gradient and nonlocal electron transfer at a planar semiconductor surface can be minimized. Here, we present a newly developed platform as a SECM substrate for investigating semiconductor PEC activities, which is based on a transparent ultramicroelectrode (UME) fabricated by using two-step photolithographic patterning and ion milling methods. This transparent UME with a 25 µm recessed disk shape is fully characterized with SECM for quantifying the interfacial charge-transfer rates of IrCl62-/IrCl63- by comparing with theoretical results from finite element simulations in COMSOL Multiphysics. When coated with TiO2 nanorods as a model semiconductor material, the transparent UME can be used to quantify the catalytic PEC water oxidation in a feedback mode of SECM by sampling tip and substrate current signals simultaneously. This transparent UME-SECM study provides insights into the potential-dependent PEC water oxidation reaction mechanism and the quantitative analysis of photocurrent contributions from water oxidation and the SECM tip-generated redox mediator. The transparent UME-SECM method can be potentially expanded to other SECM operation modes such as surface interrogation for understanding the dynamics of the electrode surfaces and interfaces of a PEC system.

4.
Phys Chem Chem Phys ; 23(35): 19120-19129, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524292

RESUMO

This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.

5.
Sci Bull (Beijing) ; 66(1): 52-61, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654313

RESUMO

The intrinsic activity and durability of oxygen evolution reaction (OER) electrocatalysts are mainly dominated by the surface and interface properties of active materials. Herein, a core-shell heterogeneous structure (NF/NiSe@Fe2O3) is fabricated via two-step hydrothermal method, which exhibits a low overpotential of 220 mV (or 282 mV) at 10 mA/cm2 (or 200 mA/cm2), a small Tafel slope of 36.9 mV/dec, and long-term stability (~230 h) in 1 mol/L KOH for OER. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy reveal the (oxy)hydroxide-rich surface and strong coupling interface between NiSe and Fe2O3 via the Fe-Se bond. Density functional theory calculation suggests that the d-band center and electronic state of NiSe@Fe2O3 heterojunction are well optimized due to the formation of Fe-Se bond, which is favorable for the enhanced OER activity because of the easy adsorption of oxygen-containing intermediates and desorption of O2 in the OER process. In addition, the unique core-shell structure and robust bonding interface are responsible for the good stability for OER. This work provides fundamental insights on the bonding effect that determine the performance of OER electrocatalyst.

6.
ACS Appl Mater Interfaces ; 12(24): 27443-27452, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32407071

RESUMO

Lead-based perovskite MAPbX3 (MA = CH3NH3, X = Cl and Br) has shown great potential benefits to advance modern optoelectronics and clean energy harvesting devices. Poor structural stability is one of the major challenges of MAPbX3 perovskite materials to overcome to achieve desired device performance. Here, we present the electrochemical stability study of CH3NH3PbCl1.08Br1.92 quantum dots (QDs) by electrogenerated chemiluminescence (ECL) and photoluminescence (PL) spectroelectrochemistry methods. Electrochemical anodization of pristine MAPbX3 QD film results in the disproportionate loss of methylammonium and halide ions (X = Cl and Br). ECL efficiency and stability of perovskite QDs in the presence of coreactant tripropyl amine (TPrA) can be greatly improved after being incorporated into a polystyrene (PS) matrix. Mass spectrum and X-ray photoelectron spectroscopy (XPS) measurements were used to provide chemical composition variation details of QDs, which are responsible for the ECL and PL characteristics (e.g., wavelength redshift) of perovskite QDs in an electrochemical cell.

7.
J Phys Chem Lett ; 11(9): 3488-3494, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32286830

RESUMO

Control over photophysical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) is the key to advance their applications in next-generation optoelectronics. Although chemical doping and surface modification with plasmonic metals have been reported to tune the photophysical and catalytic properties of 2D TMDs, there have been few reports of tuning optical properties using dynamic electrochemical control of electrode potential. Herein, we report (1) the photoluminescence (PL) enhancement and red-shift in the PL spectrum of 2D MoS2, synthesized by chemical vapor deposition and subsequent transfer onto an indium tin oxide electrode, upon electrochemical anodization and (2) spatial heterogeneities in its photoelectrochemical (PEC) activities. Spectroelectrochemistry shows that positive electrochemical bias causes an initial ten-fold increase in the PL intensity followed by a quick decrease in the enhancement. The PL enhancement and spectrum red-shift are associated with the decrease in nonradiative decay rates of excitons formed upon electrochemical anodization of 2D MoS2. Additionally, scanning electrochemical cell microscopy (SECCM) study shows that the 2D MoS2 crystal is spatially sensitive to PEC oxidation at positive potentials. SECCM also shows a photocurrent increase caused by spatially heterogeneous edge-type defect sites of the crystal.

8.
Chem Commun (Camb) ; 56(10): 1569-1572, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930272

RESUMO

A precious metal-free sequential series multijunction dye-sensitized solar cell (SSM-DSC)-powered water electrolysis system is demonstrated using NanoCOT and NiMoZn electrodes. A stable 3.9% solar-to-hydrogen (STH) efficiency is achieved using a recently reported black organic dye and graphene electrodes for DSCs.

9.
ACS Omega ; 4(17): 17257-17268, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31656900

RESUMO

Au-modified hematite photoanode was screened for photoelectrochemical (PEC) water oxidation by the scanning electrochemical microscopy (SECM) technique with a scanning probe of the optical fiber for visible light irradiation of the photoanode substrate. The Au-modified hematite exhibited an enhancement in the photocurrent up to 3% (at. %), and the performance drop was observed with 4-10% (at. %) of Au modification. Subsequently, pristine and Au-modified hematite thin-film photoanodes were fabricated by the spin-coating method to confirm the results of SECM. The PEC response confirms that 3% (at. %) of Au is the optimum concentration to provide the best enhancement of PEC water oxidation with a ∼6-fold increase compared to the pristine hematite sample. Direct Au oxidation, charge recombination, and strong light absorption by Au are responsible for the decrease in PEC performance when the Au percentage is above 3%. The pristine and Au-modified hematite materials were also characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Au was found to exist in the form of embedded metallic nanoparticles in the modified hematite. Mott-Schottky analysis of the bulk samples confirms an improvement in charge carrier density for the Au-modified hematite. Additionally, there was little plasmonic enhancement as evidenced by UV-vis spectroscopy, with a minimal contribution toward photoactivity. Surface interrogation SECM quantitatively probed the reactive surface states (RSSs) such as OH• formed on hematite and Au-modified hematite surfaces during water oxidation. The coverage of RSSs was found to increase with the substrate potential. The interrogated charge under the dark condition for the 3% Au-modified hematite sample is higher than the pristine hematite sample because of the enhanced electronic conductivity of the hematite film.

10.
RSC Adv ; 9(24): 13576-13585, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35519550

RESUMO

Nanostructured photoelectrodes with a high surface area and tunable optical and electrical properties can potentially benefit a photoelectrochemical (PEC) water splitting system. The PEC performance of a nanostructured photoelectrode is usually quantified in a standard three-electrode configuration under potential-assisted conditions because of the additional overpotentials for the two half-reactions of water splitting. However, it is a necessity to fully recognize their potential to split water under unassisted conditions by designing a tandem cell that can provide sufficient voltage to split water. Herein, we present a tandem cell consisting of carbon-modified cuprous oxide (C/Cu2O) nanoneedles and oxygen-deficient titanium dioxide (TiO2-x ) nanorods for unassisted solar water splitting. The synthesized photoelectrodes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) techniques. The tandem cell performance was analyzed by measuring the current-voltage responses in various photoelectrode configurations to validate the collective contributions of both photoelectrodes to unassisted solar water splitting. The PEC properties of C/Cu2O nanoneedles coupled with TiO2-x nanorods in a tandem configuration exhibited a photocurrent density of 64.7 µA cm-2 in the absence of any redox mediator and external bias. This photocurrent density can be further enhanced with an application of external bias. Moreover, the heterojunction formed by the above-mentioned nanostructured photoelectrodes in intimate contact and in the absence of water exhibited 2 µA cm-2 UV photoresponsivity at 1.5 V with promising rectifying characteristics of a diode.

12.
Chem Commun (Camb) ; 54(83): 11757-11760, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30276379

RESUMO

Quaternary MIMIIIMIVXVI4 (I-III-IV-VI4) chalcogenides obtained by cross-substitution of binary and ternary compounds remain relatively unexplored. We have for the first-time synthesized wurtzite and defect chalcopyrite phases of CuMSnS4 (M = In or Ga) in the form of nanocrystals. Optical measurements show that the CuMSnS4 (M = In or Ga) nanocrystals exhibit strong visible light absorption with band gap values between 1.15 and 1.4 eV, suitable for solar energy conversion applications.

13.
Nanotechnology ; 28(42): 425601, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28805651

RESUMO

We report fabricating vertically standing Ag nanoplates and nanowires on a transparent conductive substrate of indium tin oxides (ITO) with the assistance of a porous anodic aluminum oxide (AAO) template. Two-dimensional Ag nanoplates can be electrodeposited onto an AAO covered ITO surface without using an adhesion layer. Ag nanoplates obtained using AAO templates have 3 × {222} superlattice fringes, different from the 3 × {422} superlattice fringes reported in the previous study. Ag nanowires can be electrodeposited onto ITO which is initially covered with an AAO template through a conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The coverage, diameter, and thickness of Ag nanoplates are strongly dependent on the electrodeposition time. These Ag nanoplates and nanowires are used for surface enhanced Raman spectroscopy (SERS) and the influence of their shape, size, and coverage on SERS enhancement is studied.

14.
ACS Appl Mater Interfaces ; 9(1): 381-390, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27995797

RESUMO

Electrochemical reduction method is used for the first time to significantly improve the photo-electrochemical performance of α-Fe2O3 photoanode prepared on fluorine-doped tin oxide substrates by spin-coating aqueous solution of Fe(NO3)3 followed by thermal annealing in air. Photocurrent density of α-Fe2O3 thin film photoanode can be enhanced 25 times by partially reducing the oxide film to form more conductive Fe3O4 (magnetite). Fe3O4 helps facilitate efficient charge transport and collection from the top α-Fe2O3 layer upon light absorption and charge separation to yield enhanced photocurrent density. The optimal enhancement can be obtained for <50 nm films because of the short charge transport distance for the α-Fe2O3 layer. Thick α-Fe2O3 films require more charge and overpotential than thinner films to achieve limited enhancement because of the sluggish charge transport over a longer distance to oxidize water. Electrochemical reduction of α-Fe2O3 in unbuffered pH-neutral solution yields much higher but unstable photocurrent enhancement because of the increase in local pH value accompanied by proton reduction at a hematite surface.

15.
J Am Chem Soc ; 137(37): 11996-2005, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26340536

RESUMO

Developing high-efficiency, durable, and low-cost catalysts based on earth-abundant elements for the oxygen evolution reaction (OER) is essential for renewable energy conversion and energy storage devices. In this study, we report a highly active nanostructured electrode, NanoCOT, which contains carbon, oxygen, and titanium, for efficient OER in alkaline solution. The NanoCOT electrode is synthesized from carbon transformation of TiO2 in an atmosphere of methane, hydrogen, and nitrogen at a high temperature. The NanoCOT exhibits enhanced OER catalytic activity in alkaline solution, providing a current density of 1.33 mA/cm(2) at an overpotential of 0.42 V. This OER current density of a NanoCOT electrode is about 4 times higher than an oxidized Ir electrode and 15 times higher than a Pt electrode because of its nanostructured high surface area and favorable OER kinetics. The enhanced catalytic activity of NanoCOT is attributed to the presence of a continuous energy band of the titanium oxide electrode with predominantly reduced defect states of Ti (e.g., Ti(1+), Ti(2+), and Ti(3+)) formed by chemical reduction with hydrogen and carbon. The OER performance of NanoCOT can also be further enhanced by decreasing its overpotential by 150 mV at a current density of 1.0 mA/cm(2) after coating its surface electrophoretically with 2.0 nm IrOx nanoparticles.

16.
Inorg Chem ; 53(24): 12689-98, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25427106

RESUMO

Water oxidation can lead to a sustainable source of energy, but for water oxidation catalysts to be economical they must use earth abundant metals. We report here 2:1 6,6'-dihydroxybipyridine (6,6'-dhbp)/copper complexes that are capable of electrocatalytic water oxidation in aqueous base (pH = 10-14). Two crystal structures of the complex that contains 6,6'-dhbp and copper(II) in a ratio of 2:1 (complex 1) are presented at different protonation states. The thermodynamic acid dissociation constants were measured for complex 1, and these show that the complex is fully deprotonated above pH = 8.3 (i.e., under water oxidation conditions). CW-EPR, ENDOR, and HYSCORE spectroscopy confirmed that the 6,6'-dhbp ligand is bound to the copper ion over a wide pH range which shows how pH influences precatalyst structure. Additional copper(II) complexes were synthesized from the ligands 4,4'-dhbp (complex 2) and 6,6'-dimethoxybipyridine (complexes 3 and 4). A zinc complex of 6,6'-dhbp was also synthesized (complex 5). Crystal structures are reported for 1 (in two protonation states), 3, 4, and 5. Water oxidation studies using several of the above compounds (1, 2, 4, and 5) at pH = 12.6 have illustrated that both copper and proximal OH groups are necessary for water oxidation at a low overpotential. Our most active catalyst 1 was found to have an overpotential of 477 mV for water oxidation at a moderate rate of kcat = 0.356 s(-1) with a competing irreversible oxidation event at a rate of 1.082 s(-1). Furthermore, our combined work supports previous observations in which OH/O(-) groups on the bipyridine rings can hydrogen bond with metal bound substrate, support unusual binding modes, and potentially facilitate proton coupled electron transfer.


Assuntos
2,2'-Dipiridil/química , Complexos de Coordenação/química , Cobre/química , Água/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Oxirredução
17.
Phys Chem Chem Phys ; 16(42): 23150-6, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25252244

RESUMO

We present single molecule fluorescence and spectroelectrochemistry characteristics of 4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) bearing two carboxylic acid groups at its 2 and 6 positions. Our study shows a heterogeneous half redox potential distribution for the BODIPY molecules embedded in polystyrene film because of the heterogeneity in their charge transfer rates. Single molecules adsorbed onto a TiO2 surface with ordered nanostructures show surprising fluorescence blinking activity with the shortest ON duration time in comparison to bare glass and indium-tin oxide (ITO) surfaces. Single molecule stability tests show longer ON duration time and a stable fluorescence feature when dispersed in polystyrene thin film than molecules exposed to air. Shorter ON times are observed for molecules. In intimate contact with ITO in comparison to glass substrates. Such a decrease in their fluorescence stability or intensity is explained by charge transfer activities from the dye molecules to the metal oxide surface. Electron transfer and back transfer rates are calculated to illustrate the substrate effects by using a well-established model.

18.
J Phys Chem B ; 118(49): 14037-46, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25009953

RESUMO

We present a model electrode system comprised of nanostructured Ti electrode sensitized with Ag@Ag2S core-shell nanoparticles (NPs) for visible light driven photoelectrochemistry studies. The nanostructured Ti electrode is coated with Ti@TiO2 nanowires (NW) to provide a high surface area for improved light absorption and efficient charge collection from the Ag@Ag2S NPs. Pronounced photoelectrochemical responses of Ag@Ag2S NPs under visible light were obtained and attributed to collective contributions of visible light sensitivity of Ag2S, the local field enhancement of Ag surface plasmon, enhanced charge collection by Ti@TiO2 NWs, and the high surface area of the nanostructured electrode system. The shell thickness and core size of the Ag@Ag2S core-shell structure can be controlled to achieve optimal photoelectrochemical performance. XPS, XRD, SEM, high resolution TEM, AC impedance, and other electrochemical methods are applied to resolve the structure-function relationship of the nanostructured Ag@Ag2S NP electrode.

19.
J Phys Chem B ; 118(9): 2331-9, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24494596

RESUMO

The carotenoid astaxanthin known for its powerful antioxidant activity was electrochemically investigated along with the synthesized astaxanthin n-octanoic monoester and astaxanthin n-octanoic diester. Cyclic voltammograms (CVs) revealed a two-electron transfer oxidation for all three carotenoids with a difference in the two oxidation potentials (ΔE = E2(0) - E1(0)) slightly increasing from astaxanthin to the monoester to diester. Minimal or no exposure to water prevented the formation of carotenoid neutral radicals from dications and radical cations, causing near absence of the fifth peak in the CVs. This makes the CVs almost reversible and enables a more precise simulation of the redox potentials and the equilibrium constants for the formation of radical cations. The first oxidation potential (E1(0)) of 0.7678, 0.7738, and 0.7753 V versus SCE and the second oxidation potential (E2(0)) of 0.9828, 0.9931, and 0.9966 V versus SCE for astaxanthin, monoester, and diester, respectively, have been standardized to the potential of ferrocene of 0.528 V vs SCE given in a previous study. Reduction potentials (E3(0)) for formation of carotenoid neutral radicals from dications after proton loss from the three studied carotenoids are presented and compared to those of other carotenoids. According to our DFT calculations, the most favorable sites for deprotonation of radical cations and dications are found on the cyclohexene rings. These measurements provide insight into important properties of these carotenoids like radical scavenging of (•)OH, (•)CH3, and (•)OOH by proton abstraction from the carotenoid or the formation of carotenoid neutral radicals from radical cations which can quench photoexcited states. There is no essential difference in first oxidation potentials for the three carotenoids, which suggests a similar scavenging rate of the esters of astaxanthin toward (•)OH, (•)CH3, and (•)OOH radicals when compared to astaxanthin itself. The large equilibrium constants K(com) (102.4, 409.6, and 204.8 for astaxanthin, monoester, and diester) derived from simulation indicate a preference for radical cation formation for both astaxanthin and its esters, while electron transfer to form dications will be unlikely. Proton transfer from the radical cations, which are weak acids, to the neighboring proton acceptors will form neutral radicals, which allows quenching of excited states.


Assuntos
Radicais Livres/química , Técnicas Eletroquímicas , Compostos Ferrosos/química , Metalocenos , Oxirredução , Xantofilas/química
20.
Phys Chem Chem Phys ; 15(48): 20797-807, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24196825

RESUMO

We present a review of recent efforts aimed at understanding interfacial charge transfer at the single molecule and single nanoparticle level using the combined methods of traditional electrochemistry and optical spectroscopy with high spatial, spectral, and temporal resolution. Elastic light scattering, surface enhanced Raman scattering (SERS), fluorescence, and electrogenerated chemiluminescence (ECL) techniques have been demonstrated to be powerful tools for the study of interfacial charge transfer events involving a single molecule or nanoparticle and for the characterization of nanostructured electrodes. It is shown that these optical methods enable the exploration of electrochemical events with improved temporal and spatial resolution which are usually obstructed by the ensemble averaging inherent in conventional electrochemical methods. In this report, the current status of the field is reviewed and challenges for future work are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...