Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Colloids Surf B Biointerfaces ; 237: 113849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492413

RESUMO

Oral colonic nano-drug delivery system has received more and more attention in the treatment of colon cancer due to local precision treatment and reduction of drug system distribution. However, the complex and harsh gastrointestinal environment and the retention of nanoparticles in the colon limit its development. To this end, we designed Eudragit S100 (ES) coated nanoparticles (ES@PND-PEG-TPP/DOX). Polydopamine coated nanodiamond (PND) was modified with amino-functionalized polyethylene glycol (NH2-PEG-NH2) and triphenylphosphine (TPP) successively. Due to the high specific surface area of PND, it can efficiently load the model drug doxorubicin hydrochloride (DOX). In addition, PND also has high photothermal conversion efficiency, generating heat to kill cancer cells under near infrared (NIR) laser, realizing the combination of chemotherapy and photothermal therapy (CT-PTT). TPP modification enhanced nanoparticle uptake by colon cancer cells and prolonged preparations retention time at the colon. ES shell protected the drug from being destroyed and prevented the nanoparticles from sticking to the small intestine. Ex vitro fluorescence imaging showed that TPP modification can enhance the residence time of nanoparticles in the colon. In vivo pharmacodynamics demonstrated that CT-PTT group has the greatest inhibitory effect on tumor growth, which means that the nanocarrier has potential clinical value in the in-situ treatment of colon cancer.


Assuntos
Neoplasias do Colo , Nanodiamantes , Nanopartículas , Ácidos Polimetacrílicos , Humanos , Fototerapia/métodos , Doxorrubicina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
2.
Asian J Pharm Sci ; 18(4): 100827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37588993

RESUMO

Nano-targeted delivery systems have been widely used for breast tumor drug delivery. Estrogen receptors are considered to be significant drug delivery target receptors due to their overexpression in a variety of tumor cells. However, targeted ligands have a significant impact on the safety and effectiveness of active delivery systems, limiting the clinical transformation of nanoparticles. Phytoestrogens have shown good biosafety characteristics and some affinity with the estrogen receptor. In the present study, molecular docking was used to select tanshinone IIA (Tan IIA) among phytoestrogens as a target ligand to be used in nanodelivery systems with some modifications. Modified Tan IIA (Tan-NH2) showed a good biosafety profile and demonstrated tumor-targeting, anti-tumor and anti-tumor metastasis effects. Moreover, the ligand was utilized with the anti-tumor drug Dox-loaded mesoporous silica nanoparticles via chemical modification to generate a nanocomposite Tan-Dox-MSN. Tan-Dox-MSN had a uniform particle size, good dispersibility and high drug loading capacity. Validation experiments in vivo and in vitro showed that it also had a better targeting ability, anti-tumor effect and lower toxicity in normal organs. These results supported the idea that phytoestrogens with high affinity for the estrogen receptor could improve the therapeutic efficacy of nano-targeted delivery systems in breast tumors.

3.
J Nanobiotechnology ; 21(1): 237, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488582

RESUMO

The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering. Therefore, this paper reviews the recent trends of stimuli-responsive electrospun nanofibers as intelligent drug delivery platforms in the field of biomedicine.


Assuntos
Nanofibras , Neoplasias , Humanos , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Bandagens , Neoplasias/tratamento farmacológico
4.
AAPS PharmSciTech ; 24(4): 86, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964428

RESUMO

Oral administration of doxorubicin (DOX) is preferred but challenged owing to poor permeability in the gastrointestinal tract (GIT), efflux of P-glycoprotein, short residence time in the intestine, and rapid hydrolysis. Herein, folic acid-chitosan oligosaccharide conjugate (FA-COS)-modified hydroxylated nanodiamond (ND-OH) was designed to enhance the oral bioavailability of DOX. The carboxyl surface of ND was modified into hydroxyl terminal group to increase the colloidal stability of the system under different pH conditions in GIT. FA-COS modification could prolong retention time, endow the drug with sustained release properties, and actively target intestinal FA receptors. In contrast to DOX/ND-OH, the particle size of DOX/ND-OH/FA-COS increased from 189.5 ± 2.8 to 224.5 ± 1.4 nm, and the zeta potential reversed from - 9.1 ± 0.2 to 14.8 ± 0.4 mV. At 48 h, DOX/ND-OH and DOX/ND-OH/FA-COS released 69.07 ± 5.70% and 35.87 ± 5.64%, respectively. FA-COS modification effectively enhanced the cytotoxicity and intracellular uptake of ND-OH/DOX by Caco-2 cells and prolonged intestinal retention in rats. The internalization of DOX/ND-OH and DOX/ND-OH/FA-COS was mainly mediated by energy-dependent clathrin- and caveolae-mediated endocytosis pathways. Pharmacokinetic study demonstrated that the AUC0-t of DOX/ND-OH and DOX/ND-OH/FA-COS was enhanced by 3.94- and 6.08-fold compared to DOX solution, respectively. These results illustrated that DOX/ND-OH/FA-COS could be an effective strategy to enhance the oral bioavailability of DOX.


Assuntos
Quitosana , Nanodiamantes , Humanos , Ratos , Animais , Portadores de Fármacos/química , Quitosana/química , Ácido Fólico/química , Células CACO-2 , Doxorrubicina , Oligossacarídeos , Sistemas de Liberação de Medicamentos
5.
Macromol Biosci ; 23(2): e2200380, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409150

RESUMO

The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.


Assuntos
Fibroínas , Nanofibras , Fibroínas/farmacologia , Alicerces Teciduais , Engenharia Tecidual , Osso e Ossos , Cicatrização , Nanofibras/uso terapêutico , Seda
6.
Pharmaceutics ; 14(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36365242

RESUMO

In this study, hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) were used for the synthesis of novel targeted nanocarrier carbon dots (CDC-H) with photo-luminescence using a one-step hydrothermal method. Doxorubicin (DOX), a common chemotherapeutic agent, was loaded with the CDC-H through electrostatic interactions to form DOX-CDC-H complexes as a targeted antitumor drug delivery system. The synthesized CDC-H show a particle size of approximately 6 nm and a high fluorescence quantum yield of 11.64%. The physical and chemical character properties of CDC-H and DOX-CDC-H complexes were investigated using various techniques. The results show that CDC-H have stable luminescent properties and exhibit excellent water solubility. The in vitro release study showed that DOX-CDC-H exhibited pH-dependent release for 24 h. Confocal laser scanning microscopy was applied to investigate the potential of CDC-H for cell imaging and the cellular uptake of DOX-CDC-H in different cells (NIH-3T3 and 4T1 cells), and the results confirmed the target cell imaging and cellular uptake of DOX-CDC-H by specifically binding the CD44 receptors on the surface of tumor cells. The r MTT results suggest that the DOX-CDC-H complex may induce apoptosis in 4T1 cells, reducing the cytotoxicity of free DOX-induced apoptosis. In vivo antitumor experiments of DOX-CDC-H exhibited enhanced tumor cancer therapy. CDC-H have potential applications in bioimaging and antitumor drug delivery.

7.
AAPS PharmSciTech ; 23(8): 287, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266593

RESUMO

In this study, flurbiprofen (FB) was selected as the model drug, and hyaluronic acid-coated flurbiprofen-layered double hydroxide ophthalmic drug delivery system (HA-FB-LDH) was designed and prepared. In this system, the model drug flurbiprofen was intercalated in layered double hydroxide and coated with hyaluronic acid (HA), so as to prolong the corneal residence time and increase the corneal permeability of the drug. Layered double hydroxide (LDH) was prepared by alcohol-water coprecipitation method. Through single factor investigation, the optimum preparation conditions were obtained as follows: The Mg/Al ratio was 2:1, the reaction pH was 11.0, the hydrothermal reaction time was 24 h, and the hydrothermal reaction temperature was 100°C. Under these conditions, the particle size of LDH was 116.4 ± 0.8 nm, the potential was 42.2 ± 1.2 mV, and a relatively regular crystal structure could be had. Then FB was intercalated into the LDH layer to prepare flurbiprofen-layered double hydroxide (FB-LDH). In the end, HA-FB-LDH was prepared by the stirring-ultrasonic method, in which through prescription screening, the molecular weight of HA was 200-400 kDa and the concentration of HA solution was 1.25 mg·mL -1, the final particle size of HA-FB-LDH was 185.8 ± 3.3 nm, and potential of - 31.4 ± 0.7 mV. The successful loading of FB and the coating of HA were verified by XRD, FTIR, TGA, TEM, and other characterization methods. The results of in vitro stability experiment indicated that the coating of HA could significantly enhance the stability of LDH in the presence of electrolytes. The in vitro release results suggested that the cumulative release amounts of FB-LDH and HA-FB-LDH within 12 h were 92.99 ± 0.37% and 74.82 ± 0.29% respectively, showing a certain sustained release effect. At the same time, the release mechanism of FB-LDH was preliminarily explored by in vitro release experiment, which proved that the release mechanism of FB-LDH was mainly ion exchange. The results of in vivo ocular irritation experiments demonstrated that the ophthalmic preparation studied in this paper was safe and non-irritating. The results of tear pharmacokinetics in rabbits showed that the area under the curve(AUC), the average residence time (MRT), and the highest concentration (Cmax) in tears in the HA-FB-LDH group were 4.43, 4.48, and 2.27 times higher than those in eye drops group separately. Furthermore, the AUC of the HA-FB-LDH group was 1.48 times higher than that of the FB-LDH group. The above results suggested that HA-FB-LDH could improve the precorneal residence time. The results of aqueous humor pharmacokinetics in rabbits indicated that the AUC, MRT, and maximum concentration (Cmax) in aqueous humor in the HA-FB-LDH group were 6.88, 2.15, and 4.08 times of those in the eye drop group respectively. Additionally, the AUC and MRT of the HA-FB-LDH group were 1.55 and 1.63 times those of the FB-LDH group separately. These mentioned findings verified that HA-FB-LDH could enhance the corneal permeability of the drug. The fluorescent substance-fluoresce isothiocyanate (FITC) was substituted for FB intercalation in LDH for in vitro tissue imaging study of rabbits, whose results stated clearly that FITC-LDH and HA-FITC-LDH could both prolong the precorneal residence time of drugs, and HA-FITC-LDH could increase the corneal permeability of the drug to a certain extent. To sum up, HA-FB-LDH, which can overcome the shortcomings of low bioavailability of traditional eye drops to a certain degree, is a safe and effective ophthalmic drug delivery system.


Assuntos
Flurbiprofeno , Animais , Coelhos , Ácido Hialurônico/farmacologia , Preparações de Ação Retardada/farmacologia , Fluoresceína-5-Isotiocianato , Soluções Oftálmicas/química , Hidróxidos/química , Hidróxidos/farmacologia , Córnea , Água/farmacologia , Sistemas de Liberação de Medicamentos/métodos
8.
Int J Nanomedicine ; 17: 3913-3931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36097445

RESUMO

As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.


Assuntos
Nanofibras , Bandagens , Polissacarídeos , Reprodutibilidade dos Testes , Cicatrização
9.
Mol Pharm ; 19(11): 3831-3845, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36067066

RESUMO

The present study was to evaluate the potential effectiveness of low-molecular-weight chitosan-coated baicalin methoxy poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (BA LCH NPs) for the treatment of cataract. mPEG-PLGA NPs were optimized by the Box-Behnken design and the central composite design based on the encapsulation efficiency and drug loading. Then, the BA LCH NPs were characterized based on morphology, particle size, and zeta potentials. The analytical data of differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy depicted the drug excipient compatibility. In vitro, we evaluated cell viability, cellular uptake, potential ocular irritation, transcorneal permeability, and the precorneal retention of BA LCH NPs. In vivo, the chronic selenium cataract model was selected to assess the therapeutic effect of BA LCH NPs. The size of BA LCH NPs was within the range from 148 to 219 nm and the zeta potential was 19-25 mV. Cellular uptake results showed that the fluorescence intensity of the preparations in each group increased with time, and the fluorescence intensity of the LCH NP group was significantly higher than that of the solution group. The optimized BA LCH NPs improved precorneal residence time without causing eye irritation and also showed a sustained release of BA through the cornea for effective management of cataract. Also, fluorescence tracking on the rabbit cornea showed increased corneal retention of the LCH NPs. In addition, the results of therapeutic efficacy demonstrated that BA LCH NPs can significantly reduce the content of malondialdehyde and enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase, which was comparable to positive control and better than the BA solution group. Thus, it can be inferred that the BA LCH NPs are a promising drug delivery system for enhancing the ophthalmic administration of BA to the posterior segment of the eye and improving cataract symptoms.


Assuntos
Catarata , Quitosana , Nanopartículas , Animais , Coelhos , Quitosana/química , Portadores de Fármacos/química , Polietilenoglicóis/química , Nanopartículas/química , Ácido Láctico/química , Tamanho da Partícula , Catarata/induzido quimicamente , Catarata/tratamento farmacológico
10.
Mol Pharm ; 19(9): 3323-3335, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35900105

RESUMO

Combining chemotherapy with photothermal therapy (PTT) for cancer treatment could overcome the inherent limitations of both single-modality chemotherapy and PTT. However, the obstacle of accurate drug delivery to tumor sites based on chemo-photothermal remains challenging. This article describes development of a reactive oxygen species (ROS)-responsive hyaluronic acid-based nanoparticle to overcome these drawbacks. Herein, HA-TK-MTX (HTM) was synthesized by a ROS-responsive cleaved thioketal moiety linker (TK) of methotrexate (MTX) and hyaluronic acid (HA). Through hydrophobic interaction and π-π stacking interaction, a photothermal agent IR780 was integrated into the HTM, and the IR780/HTM nanoparticles (IHTM NPs) were obtained. The IHTM NPs show high photostability, excellent photothermal performance, remarkable tumor-targeting ability, and ROS sensibility. Due to the accurate drug delivery ability and superior chemo-photothermal treatment effect of IHTM NPs, the tumor inhibition rate reached 70.95% for 4T1 tumor-bearing mice. This work serves as a precedent for the chemo-photothermal therapy of cancer by rationally designing ROS-responsive nanoparticles.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/química , Ácido Hialurônico/química , Metotrexato/química , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Terapia Fototérmica , Espécies Reativas de Oxigênio/uso terapêutico
11.
Int J Pharm ; 618: 121679, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35314275

RESUMO

A customized implantable drug delivery system with the dual functions of playing a supporting role and providing continuous bacteriostasis is of great importance during the treatment of bone defect diseases. The main objective of this study was to explore the potential of using three-dimensional (3D) printing technologies to fabricate customized implants. Ciprofloxacin hydrochloride (Cipro) was chosen as the model drug, and two printing technologies, semisolid extrusion (SSE) and fused deposition modeling (FDM) were introduced. Six kinds of implants with customized irregular shapes were printed via FDM technology. Two kinds of implants with customized dosages were constructed via SSE technology. In addition, three kinds of implants with customized internal structures were produced via FDM and SSE technologies. The data for morphology, dimensions and mechanical properties demonstrated satisfactory printability and good printing accuracy when applying SSE and FDM technologies to produce the customized implants. The dissolution curves indicated that the desired customized drug release could be achieved by designing the specific internal structures. The biocompatibility examination showed that the printed implants possessed outstanding biocompatibility. In conclusion, all results suggested that 3D printing technologies provide a feasible method and novel strategy to fabricate customized implantable drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Ciprofloxacina , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Preparações Farmacêuticas , Próteses e Implantes , Tecnologia Farmacêutica
12.
Pharmacol Res ; 176: 106080, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032663

RESUMO

Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias do Colo/terapia , Curcumina/administração & dosagem , Ácido Fólico/administração & dosagem , Indóis/administração & dosagem , Nanodiamantes/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polímeros/administração & dosagem , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Terapia Combinada , Curcumina/química , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Ácido Fólico/química , Ácido Fólico/farmacocinética , Indóis/química , Indóis/farmacocinética , Camundongos Endogâmicos BALB C , Nanodiamantes/química , Terapia Fototérmica , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polímeros/química , Polímeros/farmacocinética
13.
J Pharm Sci ; 111(5): 1391-1400, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34563534

RESUMO

We developed a composite system combining self-targeted carbon dots and thermosensitive in situ hydrogels for ocular drug delivery of diclofenac sodium (DS). DS-CDC-HP nanoparticles were prepared by loading DS on the surface of CDC-HP via electrostatic interactions. An orthogonal experimental design was selected to screen the optimal thermosensitive hydrogel matrices and then DS-CDC-HP nanoparticles were embedded to form the composite system. The physicochemical properties and release behavior of this system were characterized, and in vivo fluorescence imaging was carried out. Corneal penetrability and in vitro cellular studies (cytotoxicity, cell imaging and cell uptake) were performed to test the feasibility and potential of this ocular delivery system. Finally, the optimal gel matrix consisting of Poloxamer 407: Poloxamer 188: HPMC E50 was 21:1:1 (w/v %), and the gelation temperature before adding artificial tear fluid was 26.67°C and 34.29°C, respectively. This system has the characteristics of biphasic drug release. In addition, the corneal penetrability and in vivo fluorescence study indicated that corneal transmittance was enhanced and drug retention time was extended. Cellular studies revealed that the DS-CDC-HP-Gel has good cytocompatibility and CD44 targeting. In summary, this composite system combines carbon dots with hydrogels, offering new potential for ocular drug delivery.


Assuntos
Carbono , Hidrogéis , Diclofenaco , Sistemas de Liberação de Medicamentos/métodos , Olho , Hidrogéis/química , Poloxâmero/química , Temperatura
14.
Acta Pharm Sin B ; 11(8): 2488-2504, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34567958

RESUMO

Three-dimensional printing is a technology that prints the products layer-by-layer, in which materials are deposited according to the digital model designed by computer aided design (CAD) software. This technology has competitive advantages regarding product design complexity, product personalization, and on-demand manufacturing. The emergence of 3D technology provides innovative strategies and new ways to develop novel drug delivery systems. This review summarizes the application of 3D printing technologies in the pharmaceutical field, with an emphasis on the advantages of 3D printing technologies for achieving rapid drug delivery, personalized drug delivery, compound drug delivery and customized drug delivery. In addition, this article illustrates the limitations and challenges of 3D printing technologies in the field of pharmaceutical formulation development.

15.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576093

RESUMO

We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated. The results of the in vitro release test showed that this composite ocular drug delivery system (DS-CDC-HP-Gel) exhibited sustained release for 12 h. The study of the ex vivo fluorescence distribution in ocular tissues showed that it could be used for bioimaging and tracing in ocular tissues and prolong precorneal retention. Elimination profiles in tears corresponded to the study of ex vivo fluorescence imaging. The area under the curve of DS in the aqueous humor in the DS-CDC-HP-Gel group was 3.45-fold that in the DS eye drops group, indicating a longer precorneal retention time. DS-CDC-HP with a positive charge and combined with a thermosensitive in situ gel might strengthen adherence to the corneal surface and prolong the ocular surface retention time to improve the bioavailability. This composite ocular delivery system possesses potential applications in ocular imaging and drug delivery.


Assuntos
Carbono/química , Sistemas de Liberação de Medicamentos , Olho/efeitos dos fármacos , Olho/diagnóstico por imagem , Géis/farmacologia , Temperatura , Animais , Humor Aquoso/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/síntese química , Quitosana/química , Diclofenaco/farmacologia , Liberação Controlada de Fármacos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Irritantes/toxicidade , Nanopartículas/ultraestrutura , Soluções Oftálmicas/farmacologia , Espectroscopia Fotoeletrônica , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Pharm Sci ; 110(11): 3678-3689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371072

RESUMO

A suitable drug-loaded implant delivery system that can effectively release antibacterial drug in the postoperative lesion area and help repair bone infection is very significant in the clinical treatment of bone defect. The work was aimed to investigate the feasibility of applying three-dimensional (3D) printing technology to prepare drug-loaded implants for bone repair. Semi-solid extrusion (SSE) and Fuse deposition modeling® (FDM) technologies were implemented and ciprofloxacin (CIP) was chosen as the model drug. All of the implants exhibited a smooth surface, good mechanical properties and satisfactory structural integrity as well as accurate dimensional size. In vitro drug release showed that the implants made by 3D printing technologies slowed down the initial drug burst effect and expressed a long-term sustained release behavior, compared with the implants prepared with traditional method. In addition, the patient-specific macrostructure implants, consisting of interconnected and different shapes pores, were created using unique lay down patterns. As a result, the weakest burst release effect and the sustained drug release were achieved in the patient-specific implants with linear pattern. These results clearly stated that 3D printing technology offers a viable approach to prepare control-releasing implants with patient-specific macro-porosity and presents novel strategies for treating bone infections.


Assuntos
Ciprofloxacina , Tecnologia Farmacêutica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Impressão Tridimensional , Comprimidos
17.
Mater Sci Eng C Mater Biol Appl ; 127: 112245, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225884

RESUMO

Wound healing is a complicated process constituted of four successive physiological stages involving wound bleeding, inflammatory response, cell proliferation and tissue remodeling. During this period, bacteria can easily infect the wound. Therefore, we prepared a novel curcumin-loaded sandwich-like nanofibrous membrane (CSNM) using sequential electrospinning for the hemostasis, antibacterial and accelerate wound healing. The morphology of the nanofibrous membrane was analyzed by SEM. In addition, the water absorption capacity, water vapor transmission rate, water contact-angle, and in vitro drug release were all tested. Then in vitro and in vivo hemostatic experiments demonstrated that CSNM has a good hemostatic effect. Antioxidant effect was assessed by the DPPH radical scavenging method and CSNM presented a high antioxidant activity. Additionally, CSNM demonstrated excellent antibacterial activity by the disk diffusion method. Furthermore, the rat dorsal skin defects model revealed that the CSNM distinctly induced the granulation tissue grew, collagen deposition and epithelial tissue remodeling. Meanwhile, the results of the immunohistochemical staining showed that the CSNM can facilitate the expression of CD31 and TGF-ß in the early stage of the wound, thereby accelerating wound healing. In general, this study proved that the multifunctional CSNM has great potential as wound dressing in wound healing.


Assuntos
Curcumina , Nanofibras , Animais , Antibacterianos/farmacologia , Bandagens , Curcumina/farmacologia , Ratos , Tecnologia , Cicatrização
18.
Acta Biomater ; 134: 605-620, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329781

RESUMO

Retinal diseases, including age-related macular degeneration (AMD), are a major cause of blindness. Efficient delivery of therapeutic genes to retinal cells to treat retinal disease is a formidable challenge. In this study, we developed a core-shell nanoplatform composed of a core and two external layers for targeted delivery of the gene to the retina. The inner core was composed of amino acid-functionalized dendrimers and a nuclear localization signal (NLS) for DNA complexation, nuclear transport and efficient transfection. The inner core was coated in a lipid bilayer that comprised pH-sensitive lipids as the inner shell layer. Hyaluronic acid (HA)-1,2-dioleoylphosphatidylethanolamine (DOPE) as the outermost shell layer was used for retinal cell targeting. This core-shell nanoplatform was developed so that the mobility in the vitreous body of these negatively charged carriers would not be affected by their surface charge, allowing diffusion into the retina, uptake into the retinal cells via CD44-mediated internalization, and finally transport into the nucleus by the NLS. The designed nanoparticles showed safety both in vitro and in vivo and inhibited the expression of VEGF under hypoxia-mimicking conditions. In vitro angiogenesis assays exhibited significant inhibitory effects on cell migration and tube formation. The in vivo assays indicated that this nanoplatform could be delivered to the retina. Taken together, this nanoplatform has the potential to transfer gene material into the retina for the treatment of retinal diseases, including AMD. STATEMENT OF SIGNIFICANCE: It remains a challenge to develop an efficient nonviral vector for gene therapy, especially retinal gene therapy. Various barriers exist in gene delivery and the unique ocular environment, making gene delivery to the retina difficult. In this study, we designed a negatively charged core-shell nanoplatform (HD-NPPND) for the targeted delivery of gene to the retina. The developed nanoplatform possessed excellent transfection efficiency and safety both in vitro and in vivo. It efficiently delivered a gene to the retina. The results of this study suggested that this core-shell nanoplatform has the potential to deliver genes to the retina to treat retinal diseases, including age-related macular degeneration (AMD).


Assuntos
Degeneração Macular , Nanopartículas , Técnicas de Transferência de Genes , Humanos , Ácido Hialurônico , Degeneração Macular/genética , Degeneração Macular/terapia , Retina , Transfecção
19.
Int J Biol Macromol ; 182: 1339-1350, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000316

RESUMO

Surgical resection of the tumor remains the preferred treatment for most solid tumors at an early stage, but surgical treatment often leads to massive bleeding and residual tumor cells. Therefore, a novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers (CFAGS) for rapid hemostasis and prevention of tumor recurrence was prepared by using an electrospinning and interpenetrating polymer network (IPN) strategy. The present results show that alginate/gelatin sponge display excellent hemostatic properties and possess more advantages than commercial gelatin hemostasis sponge. More importantly, CFAGS could control the release of curcumin, inducing curcumin to accumulate at the surgical site of the tumor, thereby inhibiting local tumor recurrence in the subcutaneous postoperative recurrence model. In addition, the sponge was safe to implant in the body and did not cause toxicity to normal tissues and organs. This approach represents a new strategy to implant a dual functional sponge at the postoperative site as an adjuvant to the surgical treatment of cancer.


Assuntos
Alginatos/química , Curcumina/farmacologia , Gelatina/química , Hemostasia/efeitos dos fármacos , Recidiva Local de Neoplasia/prevenção & controle , Cuidados Pós-Operatórios , Animais , Morte Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Fluorescência , Humanos , Células MCF-7 , Masculino , Recidiva Local de Neoplasia/patologia , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
20.
Int J Pharm ; 602: 120651, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915181

RESUMO

Integration of multiple therapies into one nanoplatform holds great promise to overcome the shortcomings of traditional single-modal therapy and achieve favorable antitumor efficacy. Herein, we constructed a dual receptor-targeting nanomicelle system with GSH-responsive drug release for precise fluorescence imaging and superior chemo-phototherapy of cancer. The synthetic amphiphilic hyaluronic acid derivative (FHSV) could self-assemble into nanomicelles in aqueous media. Then, paclitaxel (PTX) and photosensitizer IR780 iodide (IR780) were co-loaded into the micelles by a simple dialysis method. The resulting IR780/PTX/FHSV micelles with a particle size of 150.2 ± 6.9 nm exhibited excellent stability, GSH-responsive drug release and good photothermal/photodynamic efficacy. Once accumulated at the tumor sites, IR780/PTX/FHSV micelles efficiently entered tumor cells through receptor-mediated endocytosis and then rapidly release PTX and IR780 under GSH-rich tumor microenvironment. Upon NIR laser irradiation, IR780 produced local hyperthermia and sufficient reactive oxygen species to promote tumor cells apoptosis and necrosis. The results of in vitro and in vivo experiments consistently demonstrated that compared with single chemotherapy and phototherapy, the chemo-phototherapy could more efficiently kill tumor cells by synergistic antitumor effect. Therefore, our study provides a novel and efficient approach for multimodal treatment of malignant tumor.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Neoplasias/tratamento farmacológico , Fototerapia , Polímeros , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...