Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(4): 106471, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096034

RESUMO

Ground-level ozone threatens rice production, which provides staple food for more than half of the world's population. Improving the adaptability of rice crops to ozone pollution is essential to ending global hunger. Rice panicles not only affect grain yield and grain quality but also the adaptability of plants to environmental changes, but the effects of ozone on rice panicles are not well understood. Through an open top chamber experiment, we investigated the effects of long-term and short-term ozone on the traits of rice panicles, finding that both long-term and short-term ozone significantly reduced the number of panicle branches and spikelets in rice, and especially the fertility of spikelets in hybrid cultivar. The reduction in spikelet quantity and fertility because of ozone exposure is caused by changes in secondary branches and attached spikelet. These results suggest the potential for effective adaptation to ozone by altering breeding targets and developing growth stage-specific agricultural techniques.

2.
Foods ; 11(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36359939

RESUMO

Rice production affects the food security and socioeconomic status of over half the world's population. Rice-producing countries, however, are facing population growth, reduction in rice planting area, and global change. Understanding the trends of rice production and major determinants is key to regulating rice production. We thus analyzed the trends of rice production and related determinants in China from 2001 to 2021, revealing that the annual rice production (TRP) has risen steadily (r = 0.929, p < 0.0001) in recent 20 years. TRP in 2021 was 19.9% higher than that in 2001, which was primarily achieved by the increment of middle rice production (MRP). MRP increased by 46.2% from 2000 to 2018, and grain yield per unit area (GPA) was the largest in middle rice. The enhancement of GPAs is significantly correlated with the consumption of agricultural resources and the number of released rice cultivars, but variations exist. TRP and GPA vary in different provinces; Hunan (25 ± 2 megatons) and Xinjiang (8364 ± 806 kg/hectare) show the largest values, respectively. TRP could be further increased by 13.8% by improving MRP. The results suggest that rice production in China has a large potential to be further improved through regulations.

3.
Front Plant Sci ; 13: 983576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119594

RESUMO

High concentration of tropospheric ozone (O3) causes crop yield losses, which could be reduced by foliar application of ethylenediurea (EDU). Rice grain appearance is a major quality trait that determines the milling quality, white rice productivity and the market value. Grain chalkiness is one of the common defects that deteriorate the grain appearance in rice due to its negative effects on palatability and milling yield. Whether EDU could reduce grain chalkiness in rice which was usually increased by high concentration of O3 is not clarified. We report the grain chalkiness in 19 rice cultivars (CVs) of three types: indica (6 CVs), japonica (5 CVs) and hybrids (8 CVs), observed in an EDU application experiment in the field in China. The ambient O3 level as expressed by accumulated hourly O3 concentration over the threshold of 40 ppb (AOT40) for 80 days until maturity reached 12.8 ppm h at a near-by monitoring station. Fraction of the chalky grains (FCG) in the hybrid cultivars was 8% lower in EDU than that in the control treatments, whereas no significant effect of EDU on FCG was found in japonica or indica cultivars. The reduction of FCG due to EDU treatment in hybrid cultivars was attributed to the significant reduction of milky white grains followed by that of white belly grains. Thus, the application of EDU could ameliorate the decline of grain appearance quality in hybrid rice by decreasing the FCG and enhancing the fraction of perfect grains (FPG). Moreover, there were significant interactions between the EDU application and rice cultivars, indicating varietal difference in the protection of grain appearance quality by EDU. These results suggest the need for further studies on the mechanisms of the effects of EDU on grain chalkiness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA