Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38950183

RESUMO

The photocatalytic conversion of solar energy to hydrogen is a promising pathway toward clean fuel production, yet it requires advancement to meet industrial-scale demands. This study demonstrates that the interface engineering of heterojunctions is a viable strategy to enhance the photocatalytic performance of CuInS2/Mo2S3. Specifically, CuInS2 nanoparticles are incorporated into Mo2S3 nanospheres via a wet impregnation technique to form an S-scheme heterojunction. This configuration facilitates directional electron transfer, optimizing electron utilization and fostering efficient photocatalytic processes. The presence of an S-scheme heterojunction in CuInS2/Mo2S3 is corroborated by in situ irradiation X-ray photoelectron spectroscopy and density functional theory analyses, which confirm the directional movement of electrons at the interface of heterojunction. Comprehensive characterization of the heterojunction photocatalyst, including phase, structural, and photoelectric property assessments, reveals a significant specific surface area and light absorption capability. These attributes augment the number of active sites available in CuInS2/Mo2S3 for proton reduction reactions. This study offers a pragmatic approach for designing metal sulfide-based photocatalysts via strategic interface engineering, potentially advancing the field toward sustainable hydrogen production.

2.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973083

RESUMO

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

3.
J Ethnopharmacol ; : 118545, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002826

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qinghao-Biejia herb pair (QB) is the core herb pair of "Jieduquyuziyin prescription" and is one of the commonly used herb pairs for the clinical treatment of systemic lupus erythematosus (SLE). Previous studies have shown that QB reduces the expression of inflammatory cytokines like IL-6 and TNF-α in the serum and kidney of MRL/lpr mice. Additionally, it inhibits the expression of TLR4 and MyD88 in the kidney and aorta and reduces the deposition of renal complement C3 and aortic plaque after treatment. These findings suggest that QB has a preventive and therapeutic effect on lupus rats. AIM OF THE STUDY: This study sought to investigate the mechanisms underlying the anti-SLE combined with atherosclerosis activity of the Qinghao-Biejia herb pair. MATERIALS AND METHODS: Drug targets for QB were identified using the HERB database, while targets associated with SLE and atherosclerosis were retrieved from the GeneCards database. The intersection of these drug and disease targets was then analyzed using a protein-protein interaction (PPI) network with GO and KEGG pathway enrichment analysis. In vivo, apolipoprotein E-deficient (ApoE-/-) mice were induced to develop SLE-AS by intraperitoneal injection of pristane and continued feeding of a high-fat diet. The changes in relevant indexes were observed after 12 weeks of gavage treatment with hydroxychloroquine, QB, Q (Qinghao alone), and B (Biejia alone). Bone marrow-derived macrophages from ApoE-/- mice and Raw 264.7 macrophages were used to explore the mechanisms of QB treatment. RESULTS: The levels of inflammatory cytokines in serum and pathological liver changes in mice were improved to varying degrees in the treatment groups. Additionally, there was a reduction in aortic atheromatous plaque formation and some improvement in dyslipidemia. Furthermore, QB suppressed the expression of ABCA1/G1, suggesting a role in regulating macrophage polarization. CONCLUSION: QB demonstrates clear efficacy for treating SLE-AS, and its therapeutic mechanism may involve the regulation of macrophage phenotypes by promoting cholesterol efflux.

4.
Int J Biol Macromol ; 274(Pt 1): 133278, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906342

RESUMO

Removing free hemoglobin generated during extracorporeal circulation remains a challenge. Currently, there is no adsorbent with specificity and good biosafety for removing hemoglobin. In this study, a new chitosan/sodium alginate/carbon nitride (CS/SA/C3N4) hydrogel adsorbent was prepared by blending SA with C3N4 to drop into CS/CaCl2 solution. The physicochemical properties of CS/SA/C3N4 hydrogel were evaluated using some techniques, including scanning electron microscope, Zeta potential measurement, and thermogravimetric analysis. Hemoglobin adsorption in vitro, stability, hemocompatibility, cell compatibility, inflammatory reaction and blood extracorporeal circulation in vivo were also evaluated. The findings revealed that the CS/SA/C3N4-0.4 % hydrogel exhibited an impressive adsorption capacity of 142.35 mg/g for hemoglobin. The kinetic data of hemoglobin adsorption were well-described by pseudo second-order model, while the isothermal model data conformed to the Langmuir model. The hardness and modulus of CS/SA/C3N4-0.4 % was 11.7 KPa and 94.66 KPa respectively, which indicated robust resistance to breakage. CS/SA/C3N4 demonstrated excellent hemocompatibility, biocompatibility and anti-inflammatory properties. In addition, the results of in vivo rabbit extracorporeal blood circulation experiment demonstrated that CS/SA/C3N4 could adsorb free hemoglobin from blood while maintaining high biosafety standard. Consequently, CS/SA/C3N4 hydrogel emerges as a promising candidate for use as a hemoglobin adsorbent in extracorporeal blood circulation system.

5.
Front Endocrinol (Lausanne) ; 15: 1345293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726343

RESUMO

Objective: The activation of platelets in individuals with type 2 diabetes mellitus (T2DM) triggers inflammation and hemodynamic abnormalities, contributing to the development of diabetic kidney disease (DKD). Despite this, research into the relationship between plateletcrit (PCT) levels and DKD is sparse, with inconsistent conclusions drawn regarding the connection between various platelet parameters and DKD. This highlights the necessity for comprehensive, large-scale population studies. Therefore, our objective is to explore the association between PCT levels and various platelet parameters in relation to DKD. Methods: In this cross-sectional study, hematological parameter data were collected from a cohort of 4,302 hospitalized Chinese patients. We analyzed the relationships between PCT, platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), platelet large cell ratio (P-LCR), and DKD, along with the urinary albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic potential of these parameters. Results: DKD patients exhibited significantly higher PCT levels compared to those without DKD. Multivariate regression analysis identified elevated PCT and PLT levels as potential independent risk factors for both DKD and UACR, while lower MPV levels might serve as independent protective factors for eGFR. The areas under the ROC curve for PCT in relation to DKD and UACR (≥30 mg/g) were 0.523 and 0.526, respectively. The area under the ROC curve for PLT in relation to UACR (≥30 mg/g) was 0.523. Conclusion: PCT demonstrates a weak diagnostic value for T2DM patients at risk of developing DKD and experiencing proteinuria, and PLT shows a similarly modest diagnostic utility for detecting proteinuria. These insights contribute to a deeper understanding of the complex dynamics involved in DKD. Additionally, incorporating these markers into routine clinical assessments could enhance risk stratification, facilitating early interventions and personalized management strategies.


Assuntos
Plaquetas , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Estudos Transversais , Masculino , Feminino , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/etiologia , Pessoa de Meia-Idade , Contagem de Plaquetas , Prevalência , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Plaquetas/metabolismo , Plaquetas/patologia , Idoso , Volume Plaquetário Médio , Taxa de Filtração Glomerular , Fatores de Risco , Adulto , Biomarcadores/sangue
6.
Plant Physiol Biochem ; 211: 108716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744087

RESUMO

In the context of global climate change, recurrent freeze-thaw cycles (FTC) and concurrent exposure to polystyrene nanoplastics (PSNPs) directly impact crop growth and indirectly affect resilience to abiotic stress. In January 2023, experiments at the Environmental Biology Laboratory, Jilin University, Changchun, China, exposed rye seedlings to 100 nm PSNPs at concentrations of 0, 10, 50, and 100 mg/L for seven days, followed by three FTC. Scanning electron microscopy (SEM) demonstrated that PSNPs migrated from the roots to the leaves, with FTC significantly exacerbating their accumulation within plant tissues. Transmission electron microscopy (TEM) observations showed that FTC disrupted normal cell division, and combined stress from NPs damaged plant organs, particularly chloroplasts, thereby substantially inhibiting photosynthesis. FTC delayed plant phenological stages. Under combined stress, malondialdehyde (MDA) accumulation in plant tissues increased by 15.6%, while hydrogen peroxide (H2O2) content decreased. Simultaneously, the activities of peroxidase (POD) and catalase (CAT) increased by 34.2% and 38.6%, respectively. Molecular docking unveiled that PSNPs could bind to the active center of POD/CAT through hydrogen bonding or hydrophobic interactions. The Integrated Biomarker Response (IBR) index highlighted FTC as a crucial determinant for pronounced effects. Moreover, an apparent dose-dependent effect was observed, with antioxidant enzyme activities in rye seedlings induced by low pollutant concentrations and inhibited by high concentrations. These results indicate that FTC and PSNPs can disrupt plant membrane systems and cause severe oxidative damage. Overall, this study provides compelling scientific evidence of the risks associated with NPs exposure in plants subjected to abiotic stress.


Assuntos
Congelamento , Poliestirenos , Secale , Plântula , Plântula/efeitos dos fármacos , Plântula/metabolismo , Poliestirenos/toxicidade , Secale/efeitos dos fármacos , Secale/metabolismo , Peroxidase/metabolismo , Catalase/metabolismo , Nanopartículas/toxicidade , Simulação de Acoplamento Molecular , Malondialdeído/metabolismo
7.
J Ophthalmol ; 2024: 9911979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716089

RESUMO

Purpose: To determine the advantages of next-generation metagenomic sequencing (mNGS) technology in the diagnosis and treatment of infectious keratitis (IK). Methods: A total of 287 patients with IK admitted to the Department of Ophthalmology of Nanjing First Hospital between August 2018 and December 2022 were analyzed retrospectively, and the pathogenic causes, etiological characteristics, detection, treatment methods, and efficacy were summarized. Results: Trauma and foreign matter were the most common causes of IK (144 patients, 50.2%). Of the 287 patients, 228 (79.4%) were diagnosed with a specific etiology, including 110 (48.2%) fungal infections, 44 (19.3%) viral infections, 42 (18.4%) mixed infections, and 30 (13.2%) bacterial infections. Filamentous fungi represented by Fusarium and Aspergillus were the most common, followed by bacteria such as Pseudomonas aeruginosa, Streptococcus pneumoniae, viruses (Herpes Simplex Virus/Varicella-Zoster Virus), and parasites. The positivity rates of secretion culture, corneal laser confocal microscopy (CM), mNGS, and pathological sections were 47.3% (133/281), 45.3% (111/245), 83.9% (104/124), and 19.3% (40/207), respectively. The positivity rate of mNGS for bacteria and viruses was higher than that of the other methods, and the positivity rate for fungi was the same as that for CM. As a result, 214 cases (74.6%) were cured, 51 cases (17.8%) improved, 8 cases (2.8%) did not heal, ocular content enucleation was performed in 14 cases (4.9%), and the overall efficacy rate was 92.3%. Conclusion: Trauma and foreign matter are the main causes of IK. The mNGS technology is an efficient and comprehensive detection method for viruses and bacteria, especially for mixed infections.

8.
Ophthalmol Ther ; 13(7): 2037-2053, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743157

RESUMO

INTRODUCTION: Graft failure is a major challenge in femtosecond laser-assisted penetrating keratoplasty (Fs-PKP). This study focuses on the development and validation of a clinical predictive model aimed at identifying the risk of graft failure in individuals undergoing Fs-PKP in China, offering a tailored approach to improve surgical outcomes. METHODS: This retrospective cohort study at Nanjing First Hospital involved 238 patients and followed the TRIPOD statement. The cohort was divided into a training set (n = 166) and a validation set (n = 72) in a 7:3 ratio. It analyzed 23 predictor variables related to recipient, donor, and surgical factors, defining graft failure as "visually significant and irreversible corneal stromal edema, haze, or scarring." A comprehensive nomogram was created using univariate and multivariate Cox regression analyses and assessed by concordance index (C-index), time-dependent receiver operating characteristics (ROC) curve, calibration plots, and decision curve analysis (DCA). RESULTS: Five critical risk factors were identified: recipients' history of systemic autoimmune disorders, ocular trauma, prior penetrating keratoplasty (PKP) history, donors' diabetes history, and the endothelial cell density of the donor cornea. The nomogram showed a C-index of 0.72 (95% CI 0.65-0.79) in the training group and 0.66 (95% CI 0.55-0.76) in the validation group, indicating robust predictive accuracy. Time-dependent ROC curves, calibration plots, and DCA consistently validated the model's reliability, predictive power, and clinical utility across both training and validation cohorts. CONCLUSIONS: Our study developed and validated a model incorporating five key factors, enhancing preoperative prediction and management for Chinese patients with Fs-PKP graft failure.

9.
RSC Adv ; 14(17): 11992-12008, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38638887

RESUMO

Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.

10.
Langmuir ; 40(18): 9543-9555, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651309

RESUMO

Corrosion protection of metal has become an important and urgent topic, which requires the development of an inexpensive, environmentally friendly, and highly efficient corrosion inhibitor. Herein, a sweet potato leaf extract (SPL) was obtained by a simple water-based extraction method and then as a green corrosion inhibitor for 6N01 Al alloy in the seawater was well investigated by the weight loss method and various electrochemical tests. Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectroscopies were carried out to investigate the compositions of SPL. The findings from the potentiodynamic polarization (PDP) curves suggest that SPL functions as a typical mixed-type corrosion inhibitor. Notably, the maximum corrosion inhibition efficiency reaches 94.6% following a 36 h immersion period at 25 °C. The adsorption behavior of SPL on the Al alloy surface belongs to the Langmuir adsorption isotherm. The Gibbs free energy value illustrates that the adsorption of SPL contains both physisorption and chemisorption. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) indicate that SPL is firmly attached to the Al alloy surface by making a protective layer, which can effectively inhibit the corrosion of the Al alloy in the seawater. Furthermore, quantum chemical calculations were applied to validate the chemical adsorption and elucidate the relationship between the electronic structure of the active components in SPL and their effectiveness in corrosion inhibition.

11.
Clin Med Res ; 22(1): 28-36, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38609143

RESUMO

Background and Purpose: To evaluate the predictive power of the China-PAR model for cardiovascular disease (CVD).Methods: Dominate databases, including PubMed, Web of Science, CNKI, Wanfang Data Knowledge Service Platform, Chinese Biomedical Literature Service System, and VIP self-built database, were searched from January 1, 2016 to February 22, 2022. The primary outcome included observed events and predicted events by China-PAR. Meta-analysis was performed using RevMan 5.3 software. Stroke, arteriosclerotic cardiovascular disease (ASCVD), male, and female were divided into subgroup analyses. Funnel plots were used to assess publication bias.Results: A total of nine studies, which included 221,918 participants, were analyzed. Meta-analysis showed the combined observed incidence of CVD was 3.97%, and the combined predicted incidence was 9.59% by China-PAR. There was no significant difference between the observed and the predicted events. Subgroup analysis showed there was no statistical significance between the observed and the predicted events for stroke or for ASCVD. The difference between the observed and the predicted events by China-PAR was not statistically significant in either males or females.Conclusions: China-PAR model has important public health significance to further improve the primary prevention strategy of CVD.


Assuntos
Doenças Cardiovasculares , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Povo Asiático , China/epidemiologia , Bases de Dados Factuais , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia
12.
Photochem Photobiol Sci ; 23(5): 987-996, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662174

RESUMO

Pycnoporus sanguineus is a fungus of the phylum Basidiomycota that has many applications in traditional medicine, modern pharmaceuticals, and agricultural industries. Light plays an essential role in the metabolism, growth, and development of fungi. This study evaluated the mycelial growth and antioxidant and anti-inflammatory activities in P. sanguineus fermentation broth (PFB) cultured under different wavelengths of LED irradiation or in the dark. Compared to the dark cultures, the dry weight of mycelia in red- and yellow-light cultures decreased by 37 and 35% and the yields of pigments increased by 30.92 ± 2.18 mg and 31.75 ± 3.06 mg, respectively. Compared with the dark culture, the DPPH free radical scavenging ability, ABTS+ free radical scavenging capacity, and reducing power of yellow-light cultures increased significantly, and their total phenolic content peaked at 180.0 ± 8.34 µg/mL. However, the reducing power in blue-light cultures was significantly reduced, though the total phenol content did not vary with that of dark cultures. In LPS- and IFN-γ-stimulated RAW 264.7 cells, nitrite release was significantly reduced in the red and yellow light-irradiated PFB compared with the dark culture. In the dark, yellow-, and green-light cultures, TNF-α production in the inflamed RAW 264.7 cells was inhibited by 62, 46, and 14%, respectively. With red-, blue-, and white-light irradiation, TNF-α production was significantly enhanced. Based on these results, we propose that by adjusting the wavelength of the light source during culture, one can effectively modulate the growth, development, and metabolism of P. sanguineus.


Assuntos
Antioxidantes , Luz , Pycnoporus , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Células RAW 264.7 , Pycnoporus/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Picratos/antagonistas & inibidores , Picratos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia
13.
J Cancer ; 15(8): 2160-2178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495503

RESUMO

Background: Lung adenocarcinoma ranks as the second most widespread form of cancer globally, accompanied by a significant mortality rate. Several studies have shown that T cell exhaustion is associated with immunotherapy of tumours. Consequently, it is essential to comprehend the possible impact of T cell exhaustion on the tumor microenvironment. The purpose of this research was to create a TEX-based model that would use single-cell RNA-seq (scRNA-seq) and bulk-RNA sequencing to explore new possibilities for assessing the prognosis and immunotherapeutic response of LUAD patients. Methods: RNA-seq data from LUAD patients was downloaded from the Cancer Genome Atlas (TCGA) database and the National Center for Biotechnology Information (GEO). 10X scRNA sequencing data, as reported by Bischoff P et al., was utilized for down-sampling clustering and subgroup identification using TSNE. TEX-associated genes were identified through gene set variance analysis (GSVA) and weighted gene correlation network analysis (WGCNA). We utilized LASSO-Cox analysis to establish predicted TEX features. External validation was conducted in GSE31210 and GSE30219 cohorts. Immunotherapeutic response was assessed in IMvigor210, GSE78220, GSE35640 and GSE100797 cohorts. Furthermore, we investigated differences in mutational profiles and immune microenvironment between various risk groups. We then screened TEXRS key regulatory genes using ROC diagnostic curves and KM survival curves. Finally, we verified the differential expression of key regulatory genes through RT-qPCR. Results: Nine TEX genes were identified as highly predictive of LUAD prognosis and strongly correlated with disease outcome. Univariate and multivariate analysis revealed that patients in the low-risk group had significantly better overall survival rates compared with those in the high-risk group, highlighting the model's ability to independently predict LUAD prognosis. Our analysis revealed significant variation in the biological function, mutational landscape, and immune cell infiltration within the tumor microenvironment of both high-risk and low-risk groups. Additionally, immunotherapy was found to have a significant impact on both groups, indicating strong predictive efficacy of the model. Conclusions: The TEX model showed good predictive performance and provided a new perspective for evaluating the efficacy of preimmunization, which provides a new strategy for the future treatment of lung adenocarcinoma.

14.
J Cancer ; 15(3): 776-795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213730

RESUMO

Background: Lung adenocarcinoma is a common malignant tumor that ranks second in the world and has a high mortality rate. G protein-coupled receptors (GPCRs) have been reported to play an important role in cancer; however, G protein-coupled receptor-associated features have not been adequately investigated. Methods: In this study, GPCR-related genes were screened at single-cell and bulk transcriptome levels based on AUcell, single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network (WGCNA) analysis. And a new machine learning framework containing 10 machine learning algorithms and their multiple combinations was used to construct a consensus G protein-coupled receptor-related signature (GPCRRS). GPCRRS was validated in the training set and external validation set. We constructed GPCRRS-integrated nomogram clinical prognosis prediction tools. Multi-omics analyses included genomics, single-cell transcriptomics, and bulk transcriptomics to gain a more comprehensive understanding of prognostic features. We assessed the response of risk subgroups to immunotherapy and screened for personalized drugs targeting specific risk subgroups. Finally, the expression of key GPCRRS genes was verified by RT-qPCR. Results: In this study, we identified 10 GPCR-associated genes that were significantly associated with the prognosis of lung adenocarcinoma by single-cell transcriptome and bulk transcriptome. Univariate and multivariate showed that the survival rate was higher in low risk than in high risk, which also suggested that the model was an independent prognostic factor for LUAD. In addition, we observed significant differences in biological function, mutational landscape, and immune cell infiltration in the tumor microenvironment between high and low risk groups. Notably, immunotherapy was also relevant in the high and low risk groups. In addition, potential drugs targeting specific risk subgroups were identified. Conclusion: In this study, we constructed and validated a lung adenocarcinoma G protein-coupled receptor-related signature, which has an important role in predicting the prognosis of lung adenocarcinoma and the effect of immunotherapy. It is hypothesized that LDHA, GPX3 and DOCK4 are new potential targets for lung adenocarcinoma, which can achieve breakthroughs in prognosis prediction, targeted prevention and treatment of lung adenocarcinoma and provide important guidance for anti-tumor.

15.
Mol Biol Rep ; 51(1): 91, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193973

RESUMO

Mutations in the genes of tumor cells and the disorder of immune microenvironment are the main factors of tumor development. The sensitivity of tumor cells to chemotherapy drugs affect the treatment of tumor. Nuclear transcription factor E4BP4 is dysregulated in a variety of malignant tumors. It can suppress the transcription of NFKBIA, RASSF8, SOSTDC1, FOXO-induced genes (TRAIL, FAS, GADD45a and GADD45b) and Hepcidin, up-regulate RCAN1-1 and PRNP, activate mTOR and p38 in cancer cells. Also, E4BP4 can regulate tumor immune microenvironment. TGFb1/Smad3/E4BP4/ IFNγ axis in NK cells plays an important role in antitumor immunotherapy. Over expression of E4BP4 inhibited the development of Th17 cells by directly binding to the RORγt promoter. Moreover, recent studies have shown that E4BP4 inhibited the expression of multidrug resistance genes. In this review, we summarize the molecular mechanism of E4BP4 in cancer cellular process, the effects of E4BP4 in cancer immunotherapy and antitumor drug resistance, to provide theoretical basis for tumor treatment strategies targeting E4BP4.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Neoplasias , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Imunoterapia , Células Matadoras Naturais , Neoplasias/genética , Fatores de Transcrição/genética , Microambiente Tumoral
16.
iScience ; 26(12): 108420, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034346

RESUMO

With pre-trained large models and their associated fine-tuning paradigms being constantly applied in deep learning, the performance of large models achieves a dramatic boost, mostly owing to the improvements on both data quantity and quality. Next-generation synchrotron light sources offer ultra-bright and highly coherent X-rays, which are becoming one of the largest data sources for scientific experiments. As one of the most data-intensive scanning-based imaging methodologies, ptychography produces an immense amount of data, making the adoption of large deep learning models possible. Here, we introduce and refine the architecture of a neural network model to improve the reconstruction performance, through fine-tuning large pre-trained model using a variety of datasets. The pre-trained model exhibits remarkable generalization capability, while the fine-tuning strategy enhances the reconstruction quality. We anticipate this work will contribute to the advancement of deep learning methods in ptychography, as well as in broader coherent diffraction imaging methodologies in future.

17.
Psychiatry Res ; 329: 115523, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37812942

RESUMO

The COVID-19 pandemic has led to widespread mental health problems, necessitating the investigation of longitudinal mental health changes, associated risk factors, and neural mechanisms in survivors. We recorded demographics, mental health, social support, and potential exposures in survivors at 3 months (n = 189), 6 months (n = 47), and 2 years (n = 69) post-discharge and collected brain imaging data at the second timepoint. Control groups included non-COVID-19 locals (3 months: n = 188, 6 months: n = 42, 2 years: n = 71). Results indicated that female survivors exhibited higher post-traumatic stress symptoms (PTSS) and depression levels than female controls for up to 2 years, along with higher anxiety level for up to 6 months. Male survivors had higher PTSS, depression, and anxiety levels than male controls at 2 months. Moreover, COVID-related trauma and low social support were risk factors for PTSS and negative emotions in survivors. Neuroimaging revealed increased amygdala activity in male survivors and correlations between hippocampus activity and depression symptoms as well as between right hippocampus activity and social support. Our study emphasized the importance of monitoring mental wellness in COVID-19 survivors and underscored the crucial role of social support in mitigating mental health problems.


Assuntos
COVID-19 , Transtornos de Estresse Pós-Traumáticos , Humanos , Masculino , Feminino , Estudos Longitudinais , Transtornos de Estresse Pós-Traumáticos/psicologia , Assistência ao Convalescente , Pandemias , Alta do Paciente , COVID-19/complicações , Estudos de Coortes , Sobreviventes/psicologia , Ansiedade/epidemiologia , Ansiedade/psicologia , Depressão/epidemiologia
18.
Polymers (Basel) ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37688141

RESUMO

Metal injection molding (MIM) is a near net-shape manufacturing process combining conventional plastic injection molding and powder metallurgy. Two kinds of injections molds for MIM were developed using conventional mold steel and aluminum (Al)-filled epoxy resins in this study. The characteristics of the mold made by rapid tooling technology (RTT) were evaluated and compared with that of the fabricated conventional machining method through the MIM process. It was found that the service life of the injection mold fabricated by Al-filled epoxy resin is about 1300 molding cycles with the average surface roughness of 158 nm. The mold service life of the injection mold fabricated by Al-filled epoxy resin is about 1.3% that of the conventional mold steel. The reduction in manufacturing cost of an injection mold made by Al-filled epoxy resin is about 30.4% compared with that of the fabricated conventional mold steel. The saving in manufacturing time of an injection mold made by RTT is about 30.3% compared with that of the fabricated conventional machining method.

19.
Dev Psychol ; 59(12): 2204-2222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616122

RESUMO

The current paper reports long-term impacts of the Chicago School Readiness Project (CSRP) on measures of achievement, cognitive functioning, and behavioral regulation taken toward the end of students' high school careers. The CSRP was a self-regulation-focused early childhood intervention implemented in Head Start centers serving high-poverty neighborhoods in Chicago. The intervention was evaluated through a cluster randomized control trial, providing us with rare longitudinal evidence from an experimental study. However, the study was limited by issues with low power and baseline differences between experimental groups. Here, we report on follow-up data taken approximately 11-14 years after program completion, including measures of participants' (N = 430) academic achievement, executive functioning, emotional regulation, and behavioral problems, and we provide a range of analytic estimates to address the study's methodological concerns. Across our estimates, we found little evidence that the program had lasting impacts on indicators of late-adolescent functioning. Main effects were estimated with some imprecision, but nearly all models produced null effects across the broad array of outcomes considered. We also observed few indications that effects were moderated by posttreatment high school quality or later assignment to a light-touch mindset intervention. Implications for developmental theory and early childhood policy are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Comportamento Problema , Instituições Acadêmicas , Humanos , Pré-Escolar , Adolescente , Chicago , Estudantes/psicologia , Cognição
20.
Chem Biol Drug Des ; 102(5): 1110-1120, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500542

RESUMO

Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1ß, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 µM slightly affected cell viability, while PA at 6 and 7 µM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1ß, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.


Assuntos
Cumarínicos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Ciclo-Oxigenase 2/genética , Células RAW 264.7 , Cumarínicos/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...